Hilbert’s double series theorem and principal latent roots of the resulting matrix
HTML articles powered by AMS MathViewer
- by R. A. Fairthorne and J. C. P. Miller PDF
- Math. Comp. 3 (1949), 399-400 Request permission
References
-
H. Weyl, Singuläre Integralgleichungen mit besonderer Berücksichtigung des Fourierschen Integraltheorems. Diss. Göttingen, 1908.
G. H. Hardy, J. E. Littlewood, & G Pólya, Inequalities, Cambridge, 1934, p. 226-259.
- H. Frazer, Note on Hilbert’s inequality, J. London Math. Soc. 21 (1946), 7–9. MR 18226, DOI 10.1112/jlms/s1-21.1.7
- E. H. Copsey, H. Frazer, and W. W. Sawyer, Empirical data on Hilbert’s inequality, Nature 161 (1948), 361. MR 23359, DOI 10.1038/161361b0 R. Courant & D. Hilbert, Methoden der mathem. Physik, second ed., v. 1, Berlin, 1931; U.S.A. photo-lithoprint, 1943. A. C. Aitken, “Studies in practical mathematics. II. The evaluation of the latent roots and latent vectors of a matrix,” R. Soc. Edinb., Proc., v. 57, p. 269-304, 1937.
Additional Information
- © Copyright 1949 American Mathematical Society
- Journal: Math. Comp. 3 (1949), 399-400
- MSC: Primary 65.0X
- DOI: https://doi.org/10.1090/S0025-5718-1949-0029541-4
- MathSciNet review: 0029541