Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Recent Mathematical Tables


Journal: Math. Comp. 4 (1950), 200-221
DOI: https://doi.org/10.1090/S0025-5718-50-99456-7
Corrigendum: Math. Comp. 5 (1951), 113.
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

    J. F. Steffensen, “A table of the function $G(x) = x/(1 - {e^{ - x}})$ and its applications to problems in compound interest,” Skand. Aktuarietidskrift, 1938, p. 47-71. G. Billing, “Beiträge zur arithmetischen Theorie der ebenen kubischen Kurven vom Geschlecht eins,” K. Vetenskaps Soc., Upsala, Nova Acta, s. 4, v. 11, no. 1, 1938. C. Wolfe, “On the indeterminate equation ${x^3} + D{y^3} + {D^2}{z^3} - 3Dxyz = 1$,” Univ. of Calif., Publ. in Math. v. 1, no. 16, 1923, p. 359-369. P. Lévy, “Étude d’une classe de permutations,” Acad. Sci. Paris, Comptes Rendus, v. 227, 1948, p. 422-423; “Étude d’une nouvelle classe de permutations,” ibid., p. 578-579. H. A. Freeman, M. Freedman, F. Mosteller, & W. A. Wallis, Sampling Inspection, New York, 1948.
  • G. A. Barnard, Sequential tests in industrial statistics, Suppl. J. Roy. Statist. Soc. 8 (1946), 1–21. MR 19287
  • F. J. Anscombe, Linear sequential rectifying inspection for controlling fraction defective, Suppl. J. Roy. Statist. Soc. 8 (1946), 216–222. MR 21287
  • Abraham Wald, Sequential Analysis, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1947. MR 0020764
  • P. C. Tang, “The power function of the analysis of variance tests with tables and illustrations of their use,” Stat. Res. Mem., v. 2, 1938, p. 126-149.
  • Emma Lehmer, Inverse tables of probabilities of errors of the second kind, Ann. Math. Statistics 15 (1944), 388–398. MR 11411, DOI https://doi.org/10.1214/aoms/1177731209
  • E.g., in Control Chart Method for Controlling Quality During Production. Zl-3, Amer. Standards Assn., New York, 1942. L. H. C. Tippett, “On the extreme individuals and the range of samples taken from a normal population,” Biometrika, v. 17, 1925, p. 364-387.
  • H. J. Godwin, Some low moments of order statistics, Ann. Math. Statistics 20 (1949), 279–285. MR 30162, DOI https://doi.org/10.1214/aoms/1177730036
  • K. Pearson, Tables of the Incomplete Beta-Function, Cambridge, 1934.
  • A. S. Eddington, The mathematicl theory of relativity, Cambridge University Press, New York, 1960. MR 0115743
  • L. M. Milne-Thomson, Die elliptischen Funktionen von Jacobi. Berlin, 1931. B. A. Math. Tables Committee, Pt.-V.B. The Airy Integral. By J. C. P. Miller, Cambridge Univ. Press, 1946, 56 p.
  • J. C. P. Miller and Zaki Mursi, Notes on the solution of the equation $y”-xy=f(x)$, Quart. J. Mech. Appl. Math. 3 (1950), 113–118. MR 37608, DOI https://doi.org/10.1093/qjmam/3.1.113
  • K. Pearson, Tables of the Incomplete $\Gamma$-Function. London, 1922. C. Cranz, Lehrbuch der Ballistik, v. 1, Berlin, 1925.


Additional Information

Article copyright: © Copyright 1950 American Mathematical Society