Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 11 (1957), 272-308
DOI: https://doi.org/10.1090/S0025-5718-57-99287-6
Full-text PDF Free Access

References | Additional Information

References [Enhancements On Off] (What's this?)

  • Derrick Henry Lehmer, Guide to Tables in the Theory of Numbers, Bulletin of the National Research Council, No. 105, National Research Council, Washington, D. C., 1941. MR 0003625
  • S. A. Joffe, Editorial Note in connection with Kulik’s Magnus Canon Divisorum . . . , UMT 48, MTAC, v. 2, 1946, p. 139-140. J. Peters, A. Lodge, E. J. Ternouth, & E. Gifford, Factor Table giving the Complete Decomposition of all Numbers less than 100,000. (British Association for the Advancement of Science, Mathematical Tables, v. 5.) London, BAAS, 1935. J. Kaván Factor Tables giving the Complete Decomposition into Prime Factors of All Numbers up to 256,000 . . ., Macmillan, London, 1937. [RMT 196, MTAC, v. 1, 1945, p. 420-421.]
  • D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI https://doi.org/10.1007/BF02401102
  • A. Gloden, Table de factorisation des nombres ${N^4} + 1$ dans l’intervalle 3001-6000. [UMT 108, MTAC, v. 4, 1950, p. 224.] S. Hoppenot, Table des Solutions de la Congruence ${x^4} \equiv - 1(\bmod N)pour\;100000 < N < 200000$, Brussels, Librairie du “Sphinx,” 1935. [RMT 48, MTAC, v. 1, 1943, p. 6.]
  • A. Gloden, Table des solutions de la congruence $X^4+1\equiv 0\pmod p$ pour $2.10^5<p<3.10^5$, Mathematica, Timişoara 21 (1945), 45–65 (French). MR 0013385
  • Albert Delfield, “Table des solutions de la congruence ${X^4} + 1 \equiv 0(\bmod p)\operatorname {pour} 300000 < p < 350000$,” Institut Grand-ducal Luxembourg, Section des Sciences, Archives, v. 16, 1946. [RMT 346, MTAC, v. 2, 1947, p. 210-211.] Albert Gloden, Table des solutions de la congruence ${x^4} + 1 \equiv 0(\bmod p)pour\;350.000 < p < 500.000$, Luxembourg, author, 11 rue Jean Jaurès, and Paris, Centre de Documentation Universitaire, 1946. [RMT 410, MTAC, v. 2, 1947, p. 300-301.]
  • A. Gloden, Table de factorisation des nombres $2N^2+1$ pour $500<N\leq 1000$, Published by the author, Luxembourg, 1957 (French). 2ème éd. MR 0086411
  • A. Gloden, Solutions of ${x^4} + 1 \equiv 0(\bmod p)for\;600000 < p < 800000$ [RMT 1169, MTAC, v. 8, 1954, p. 77.]
  • Raphael M. Robinson, Factors of Fermat numbers, Math. Tables Aids Comput. 11 (1957), 21–22. MR 85269, DOI https://doi.org/10.1090/S0025-5718-1957-0085269-0
  • A. Cunningham & H. J. Woodall, “Factorisation of $Q = ({2^q} \mp q)$ and $(q{.2^q} \mp 1)$,” Messenger Math., v. 47, 1917, p. 1-38. E. Jahnke & F. Emde, Funktionentafeln mit Formeln und Kurven, second edition, Leipzig and Berlin, 1933, p. 178-179; also with various page numbers in later editions. IA. M. Kheĭfets, Tablitsy normirovannykh prisoedinennykh polinomov Lezhandra (Tables of normalized associated Legendre polynomials), Moscow, Gidrometeoizdat, 1950. R. and L. Egersdörfer, Formeln und Tabellen der zugeordneten Kugelfunktionen 1. Art von $n = 1$ bis $n = 20$. I. Teil: Formeln. Reichamt für Wetterdienst, Wissenschaftliche Abhandlungen, Bd. I, Nt. 6, Berlin, 1936.
  • A. Fletcher, J. C. P. Miller, and L. Rosenhead, An Index of Mathematical Tables, McGraw-Hill Book Company, New York; Scientific Computing Service Limited, London, 1946. MR 0018419
  • BAAS, Mathematical Tables Report, “Bessel functions of half-odd integral order,” Cambridge University Press, 1925, p. 221-233. E. C. J. von Lommel, Munich Abhandlungen, v. 15, 1886, p. 529-664.
  • G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
  • Eugene Jahnke & Fritz Emde, Funktionentafeln mit Formeln und Kurven, Teubner, Leipzig and Berlin, 1909 and 1948. K. Reitz, Institut fur Praktische Mathematik, Darmstadt, Reports, “Tabellierung Besselscher Funktionen,” 4. Bericht, p. 2-9; 6. Bericht, p. 2-31; 9 Bericht, p. 2-37, 1945. National Bureau of Standards Computation Laboratory, Tables of Spherical Bessel Functions, v. I and II, Columbia University Press, New York, 1947.
  • R. O. Gumprecht and C. M. Sliepcevich, Tables of Riccati Bessel functions for large arguments and orders, Engineering Research Institute of Michigan, Ann Arbor, Mich., 1951. MR 0045441
  • BAAS, Mathematical Tables Report, Cambridge University Press, 1925, p. 221-233. BAAS, Mathematical Tables, v. 7, The Probability Integral, W. F. Sheppard, Cambridge University Press, 1939. D. Biernes de Haan, Nouvelles Tables d’Intégrales Définies, Hafner Publishing Co., New York, 1957. [Review 60, MTAC, v. 11, 1957, p. 111.]
  • C. F. Lindman, Examen des Nouvelles Tables d’Intégrales Définies de M. Bierens de Haan. Amsterdam 1867, G. E. Stechert & Co., New York, 1944 (French). MR 0010756
  • Hermann-Josef Kopineck, Austausch- und andere Zweizentrenintegrale mit $2s$- und $2p$-Funktionen, Z. Naturforschung 5a (1950), 420–431 (German). MR 0038498
  • Hermann-Josef Kopineck, Zweizentrenintegrale mit $2s$- und $2p$-Funktionen. II. Ionenintegrale, Z. Naturforschung 6a (1951), 177–183 (German). MR 0042561
  • Hermann-Josef Kopineck, Zweizentrenwechselwirkungs-integrale. III. Integrale mit $2p$- und wasserstoffähnlichen $2s$-Funktionen, Z. Naturforschung 7a (1952), 785–800 (German). MR 0052591
  • Heinz Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 5 (1954), 233–251 (German). MR 63763, DOI https://doi.org/10.1007/bf01600331
  • Heinz Rutishauser, Anwendungen des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 5 (1954), 496–508 (German). MR 68314, DOI https://doi.org/10.1007/BF01601216
  • Heinz Rutishauser, Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 6 (1955), 387–401 (German). MR 75674, DOI https://doi.org/10.1007/BF01589764
  • P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, DOI https://doi.org/10.1090/S0025-5718-1956-0086389-6


Additional Information

Article copyright: © Copyright 1957 American Mathematical Society