Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Reviews and Descriptions of Tables and Books
HTML articles powered by AMS MathViewer

by PDF
Math. Comp. 11 (1957), 272-308 Request permission
References
  • Derrick Henry Lehmer, Guide to Tables in the Theory of Numbers, National Research Council, Washington, D.C., 1941. Bulletin of the National Research Council, No. 105. MR 0003625
  • S. A. Joffe, Editorial Note in connection with Kulik’s Magnus Canon Divisorum . . . , UMT 48, MTAC, v. 2, 1946, p. 139-140. J. Peters, A. Lodge, E. J. Ternouth, & E. Gifford, Factor Table giving the Complete Decomposition of all Numbers less than 100,000. (British Association for the Advancement of Science, Mathematical Tables, v. 5.) London, BAAS, 1935. J. Kaván Factor Tables giving the Complete Decomposition into Prime Factors of All Numbers up to 256,000 . . ., Macmillan, London, 1937. [RMT 196, MTAC, v. 1, 1945, p. 420-421.]
  • D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI 10.1007/BF02401102
  • A. Gloden, Table de factorisation des nombres ${N^4} + 1$ dans l’intervalle 3001-6000. [UMT 108, MTAC, v. 4, 1950, p. 224.] S. Hoppenot, Table des Solutions de la Congruence ${x^4} \equiv - 1(\bmod N)pour\;100000 < N < 200000$, Brussels, Librairie du “Sphinx,” 1935. [RMT 48, MTAC, v. 1, 1943, p. 6.]
  • A. Gloden, Table des solutions de la congruence $X^4+1\equiv 0\pmod p$ pour $2.10^5<p<3.10^5$, Mathematica, Timişoara 21 (1945), 45–65 (French). MR 0013385
  • Albert Delfield, “Table des solutions de la congruence ${X^4} + 1 \equiv 0(\bmod p)\operatorname {pour} 300000 < p < 350000$,” Institut Grand-ducal Luxembourg, Section des Sciences, Archives, v. 16, 1946. [RMT 346, MTAC, v. 2, 1947, p. 210-211.] Albert Gloden, Table des solutions de la congruence ${x^4} + 1 \equiv 0(\bmod p)pour\;350.000 < p < 500.000$, Luxembourg, author, 11 rue Jean Jaurès, and Paris, Centre de Documentation Universitaire, 1946. [RMT 410, MTAC, v. 2, 1947, p. 300-301.]
  • A. Gloden, Table de factorisation des nombres $2N^2+1$ pour $500<N\leq 1000$, Published by the author, Luxembourg, 1957 (French). 2ème éd. MR 0086411
  • A. Gloden, Solutions of ${x^4} + 1 \equiv 0(\bmod p)for\;600000 < p < 800000$ [RMT 1169, MTAC, v. 8, 1954, p. 77.]
  • Raphael M. Robinson, Factors of Fermat numbers, Math. Tables Aids Comput. 11 (1957), 21–22. MR 85269, DOI 10.1090/S0025-5718-1957-0085269-0
  • A. Cunningham & H. J. Woodall, “Factorisation of $Q = ({2^q} \mp q)$ and $(q{.2^q} \mp 1)$,” Messenger Math., v. 47, 1917, p. 1-38. E. Jahnke & F. Emde, Funktionentafeln mit Formeln und Kurven, second edition, Leipzig and Berlin, 1933, p. 178-179; also with various page numbers in later editions. IA. M. Kheĭfets, Tablitsy normirovannykh prisoedinennykh polinomov Lezhandra (Tables of normalized associated Legendre polynomials), Moscow, Gidrometeoizdat, 1950. R. and L. Egersdörfer, Formeln und Tabellen der zugeordneten Kugelfunktionen 1. Art von $n = 1$ bis $n = 20$. I. Teil: Formeln. Reichamt für Wetterdienst, Wissenschaftliche Abhandlungen, Bd. I, Nt. 6, Berlin, 1936.
  • A. Fletcher, J. C. P. Miller, and L. Rosenhead, An Index of Mathematical Tables, McGraw-Hill Book Co., New York; Scientific Computing Service Ltd., London, 1946. MR 0018419, DOI 10.1090/s0025-5718-45-99069-7
  • BAAS, Mathematical Tables Report, “Bessel functions of half-odd integral order,” Cambridge University Press, 1925, p. 221-233. E. C. J. von Lommel, Munich Abhandlungen, v. 15, 1886, p. 529-664.
  • G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
  • Eugene Jahnke & Fritz Emde, Funktionentafeln mit Formeln und Kurven, Teubner, Leipzig and Berlin, 1909 and 1948. K. Reitz, Institut fur Praktische Mathematik, Darmstadt, Reports, “Tabellierung Besselscher Funktionen,” 4. Bericht, p. 2-9; 6. Bericht, p. 2-31; 9 Bericht, p. 2-37, 1945. National Bureau of Standards Computation Laboratory, Tables of Spherical Bessel Functions, v. I and II, Columbia University Press, New York, 1947.
  • R. O. Gumprecht and C. M. Sliepcevich, Tables of Riccati Bessel functions for large arguments and orders, University of Michigan, Engineering Research Institute, Ann Arbor, Mich., 1951. MR 0045441
  • BAAS, Mathematical Tables Report, Cambridge University Press, 1925, p. 221-233. BAAS, Mathematical Tables, v. 7, The Probability Integral, W. F. Sheppard, Cambridge University Press, 1939. D. Biernes de Haan, Nouvelles Tables d’Intégrales Définies, Hafner Publishing Co., New York, 1957. [Review 60, MTAC, v. 11, 1957, p. 111.]
  • C. F. Lindman, Examen des Nouvelles Tables d’Intégrales Définies de M. Bierens de Haan. Amsterdam 1867, G. E. Stechert & Co., New York, 1944 (French). MR 0010756
  • Hermann-Josef Kopineck, Austausch- und andere Zweizentrenintegrale mit $2s$- und $2p$-Funktionen, Z. Naturforschung 5a (1950), 420–431 (German). MR 0038498, DOI 10.1515/zna-1950-0802
  • Hermann-Josef Kopineck, Zweizentrenintegrale mit $2s$- und $2p$-Funktionen. II. Ionenintegrale, Z. Naturforschung 6a (1951), 177–183 (German). MR 0042561, DOI 10.1515/zna-1951-0402
  • Hermann-Josef Kopineck, Zweizentrenwechselwirkungs-integrale. III. Integrale mit $2p$- und wasserstoffähnlichen $2s$-Funktionen, Z. Naturforschung 7a (1952), 785–800 (German). MR 0052591, DOI 10.1515/zna-1952-1204
  • Heinz Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 5 (1954), 233–251 (German). MR 63763, DOI 10.1007/bf01600331
  • Heinz Rutishauser, Anwendungen des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 5 (1954), 496–508 (German). MR 68314, DOI 10.1007/BF01601216
  • Heinz Rutishauser, Bestimmung der Eigenwerte und Eigenvektoren einer Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus, Z. Angew. Math. Phys. 6 (1955), 387–401 (German). MR 75674, DOI 10.1007/BF01589764
  • P. C. Hammer, O. J. Marlowe, and A. H. Stroud, Numerical integration over simplexes and cones, Math. Tables Aids Comput. 10 (1956), 130–137. MR 86389, DOI 10.1090/S0025-5718-1956-0086389-6
Additional Information
  • © Copyright 1957 American Mathematical Society
  • Journal: Math. Comp. 11 (1957), 272-308
  • DOI: https://doi.org/10.1090/S0025-5718-57-99287-6