The epsilon algorithm and operational formulas of numerical analysis
HTML articles powered by AMS MathViewer
- by P. Wynn PDF
- Math. Comp. 15 (1961), 151-158 Request permission
References
-
H. Padé, “Sur la Representation Approchée d’une Fonction par des Fractions Rationelles,” Ann. Ec. Norm. Sup. 3, 1892, p. 9.
- Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
- Zdeněk Kopal, Operational methods in numerical analysis based on rational approximations, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, University of Wisconsin Press, Madison, Wis., 1959, pp. 25–43. Edited by R. E. Langer. MR 0102165
- Daniel Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1–42. MR 68901, DOI 10.1002/sapm19553411
- P. Wynn, The rational approximation of functions which are formally defined by a power series expansion, Math. Comput. 14 (1960), 147–186. MR 0116457, DOI 10.1090/S0025-5718-1960-0116457-2
- P. Wynn, On a device for computing the $e_m(S_n)$ tranformation, Math. Tables Aids Comput. 10 (1956), 91–96. MR 84056, DOI 10.1090/S0025-5718-1956-0084056-6 P. Wynn, “The numerical efficiency of certain continued fraction expansions,” to appear.
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Math. Comp. 15 (1961), 151-158
- MSC: Primary 65.25
- DOI: https://doi.org/10.1090/S0025-5718-1961-0158513-X
- MathSciNet review: 0158513