Iterated square root expansions for the inverse cosine and inverse hyperbolic cosine
HTML articles powered by AMS MathViewer
- by Henry C. Thacher PDF
- Math. Comp. 15 (1961), 399-403 Request permission
Abstract:
Let ${R_1} = \sqrt {2 + 2x}$, ${R_{k + 1}} = \sqrt {|{2 + {R_k}}|}$. Then ${2^k}\sqrt {|{2 - {R_k}}|}$ and ${2^k}{\{ |{6 - 2\sqrt {3 + 3{R_k}} }|\} ^{1/2}}$ both converge to $\arccos x$ if $|x| \leqq 1$ and to $\operatorname {arccosh} x$ if $1 \leqq x < \infty$. Truncation errors for the two expressions are of the order of 2$^{-2k}$ and 2$^{-4k}$, respectively.References
- Preston C. Hammer, Iterative procedures for taking roots based on square roots, Math. Tables Aids Comput. 9 (1955), 68. MR 69583, DOI 10.1090/S0025-5718-1955-0069583-9
- Richard Courant and Herbert Robbins, What Is Mathematics?, Oxford University Press, New York, 1941. MR 0005358
Additional Information
- © Copyright 1961 American Mathematical Society
- Journal: Math. Comp. 15 (1961), 399-403
- MSC: Primary 65.20
- DOI: https://doi.org/10.1090/S0025-5718-1961-0135228-5
- MathSciNet review: 0135228