Approximate integration formulas for certain spherically symmetric regions
Authors:
A. H. Stroud and Don Secrest
Journal:
Math. Comp. 17 (1963), 105-135
MSC:
Primary 65.55
DOI:
https://doi.org/10.1090/S0025-5718-1963-0161473-0
MathSciNet review:
0161473
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Paul Appell, Analyse mathématique à l’usage des candidats au certificat de mathématiques générales et aux grandes écoles. Tome I. Analyse des courbes, surfaces et fonctions usuelles, intégrales simples, Gauthier-Villars, Paris, 1951 (French). 6th ed. MR 0038393
- [2] H. S. M. Coxeter, Regular Polytopes, Methuen, London, 1948.
- [3] V. A. Ditkin, On certain approximate formulas for the calculation of triple integrals, Doklady Akad. Nauk SSSR (N.S.) 62 (1948), 445–447 (Russian). MR 0027603
- [4] Preston C. Hammer and Arthur H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comput. 12 (1958), 272–280. MR 102176, https://doi.org/10.1090/S0025-5718-1958-0102176-6
- [5] Preston C. Hammer and A. Wayne Wymore, Numerical evaluation of multiple integrals. I, Math. Tables Aids Comput. 11 (1957), 59–67. MR 87220, https://doi.org/10.1090/S0025-5718-1957-0087220-6
- [6] R. G. Hetherington, Numerical Integration over Hypershells, Thesis, University of Wisconsin, 1961.
- [7] F. B. Hildebrand, Introduction to numerical analysis, McGraw-Hill Book Company, Inc., New York-Toronto-London, 1956. MR 0075670
- [8] Dunham Jackson, Formal properties of orthogonal polynomials in two variables, Duke Math. J. 2 (1936), no. 3, 423–434. MR 1545933, https://doi.org/10.1215/S0012-7094-36-00233-8
- [9] V. I. Krylov, Priblizhennoe vychislenie integralob, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0111138
- [10] William H. Peirce, Numerical integration over the planar annulus, J. Soc. Indust. Appl. Math. 5 (1957), 66–73. MR 90122
- [11] William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput. 11 (1957), 244–249. MR 93910, https://doi.org/10.1090/S0025-5718-1957-0093910-1
- [12] Philip Rabinowitz and George Weiss, Tables of abcissas and weights for numerical evaluation of integrals of the form ∫₀^{∞}𝑒^{-𝑥}𝑥ⁿ𝑓(𝑥)𝑑𝑥, Math. Tables Aids Comput. 13 (1959), 285–294. MR 107992, https://doi.org/10.1090/S0025-5718-1959-0107992-3
- [13] Johann Radon, Zur mechanischen Kubatur, Monatsh. Math. 52 (1948), 286–300 (German). MR 33206, https://doi.org/10.1007/BF01525334
- [14] A. H. Stroud, Numerical integration formulas of degree two, Math. Comput. 14 (1960), 21–26. MR 0109977, https://doi.org/10.1090/S0025-5718-1960-0109977-8
- [15] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ., v. 23, 1939.
Retrieve articles in Mathematics of Computation with MSC: 65.55
Retrieve articles in all journals with MSC: 65.55
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1963-0161473-0
Article copyright:
© Copyright 1963
American Mathematical Society