Stabilizing predictors for weakly unstable correctors
Author:
Hans J. Stetter
Journal:
Math. Comp. 19 (1965), 84-89
MSC:
Primary 65.60
DOI:
https://doi.org/10.1090/S0025-5718-1965-0178576-9
MathSciNet review:
0178576
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Peter Henrici, Discrete variable methods in ordinary differential equations, John Wiley & Sons, Inc., New York-London, 1962. MR 0135729
- W. E. Milne and R. R. Reynolds, Stability of a numerical solution of differential equations, J. Assoc. Comput. Mach. 6 (1959), 196–203. MR 102182, DOI https://doi.org/10.1145/320964.320976
- Germund Dahlquist, Convergence and stability in the numerical integration of ordinary differential equations, Math. Scand. 4 (1956), 33–53. MR 80998, DOI https://doi.org/10.7146/math.scand.a-10454
- T. E. Hull and A. L. Creemer, Efficiency of predictor-corrector procedures, J. Assoc. Comput. Mach. 10 (1963), 291–301. MR 154419, DOI https://doi.org/10.1145/321172.321176
- Herbert S. Wilf, Maximally stable numerical integration, J. Soc. Indust. Appl. Math. 8 (1960), 537–540. MR 114300
- R. W. Hamming, Numerical methods for scientists and engineers, 2nd ed., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. International Series in Pure and Applied Mathematics. MR 0351023 A. Neiss, Untersuchungen zur Stabilität von Predictor-Corrector-Verfahren, Diplomarbeit, Techn. Hochschule München, 1964.
Retrieve articles in Mathematics of Computation with MSC: 65.60
Retrieve articles in all journals with MSC: 65.60
Additional Information
Article copyright:
© Copyright 1965
American Mathematical Society