Some fifth degree integration formulas for symmetric regions
HTML articles powered by AMS MathViewer
- by A. H. Stroud PDF
- Math. Comp. 20 (1966), 90-97 Request permission
References
- V. A. Ditkin, On certain approximate formulas for the calculation of triple integrals, Doklady Akad. Nauk SSSR (N.S.) 62 (1948), 445–447 (Russian). MR 0027603
- F. R. Gantmaher, Teoriya matric, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow, 1953 (Russian). MR 0065520
- Preston C. Hammer and Arthur H. Stroud, Numerical evaluation of multiple integrals. II, Math. Tables Aids Comput. 12 (1958), 272–280. MR 102176, DOI 10.1090/S0025-5718-1958-0102176-6 R. G. Hetherington, "Numerical integration over hypershells," Thesis, University of Wisconsin, Madison, Wis., 1961.
- I. P. Mysovskih, Cubature formulas for evaluating integrals over a sphere, Dokl. Akad. Nauk SSSR 147 (1962), 552–555 (Russian). MR 0146961
- William H. Peirce, Numerical integration over the planar annulus, J. Soc. Indust. Appl. Math. 5 (1957), 66–73. MR 90122
- William H. Peirce, Numerical integration over the spherical shell, Math. Tables Aids Comput. 11 (1957), 244–249. MR 93910, DOI 10.1090/S0025-5718-1957-0093910-1
- A. H. Stroud and Don Secrest, Gaussian quadrature formulas, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR 0202312
Additional Information
- © Copyright 1966 American Mathematical Society
- Journal: Math. Comp. 20 (1966), 90-97
- MSC: Primary 65.55
- DOI: https://doi.org/10.1090/S0025-5718-1966-0191094-8
- MathSciNet review: 0191094