Boundedness of difference kernels of Bessel and Fourier series
HTML articles powered by AMS MathViewer
- by Shih-hsiung Tung PDF
- Math. Comp. 20 (1966), 157-163 Request permission
References
-
E. W. Hobson, "On the representation of a function by series of Bessel functions," Proc. London Math. Soc., (2), v. 7, 1909, pp. 359–388.
E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier Series, Vol. II, Dover, New York, 1958. MR 19, 1166.
K. Knopp, Theory and Application of Infinite Series, Blackie, London, 1957.
- I. P. Natanson, Teoriya funkciĭ veščestvennoĭ peremennoĭ, Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow-Leningrad, 1950 (Russian). MR 0039790 E. C. Titchmarsh, The Theory of Functions, Oxford Univ. Press, London, 1939.
- E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations, Oxford, at the Clarendon Press, 1946 (German). MR 0019765
- G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, England; The Macmillan Company, New York, 1944. MR 0010746 W. H. Young, "On series of Bessel functions," Proc. London Math. Soc., (2), v. 18, 1920, pp. 163–200.
Additional Information
- © Copyright 1966 American Mathematical Society
- Journal: Math. Comp. 20 (1966), 157-163
- MSC: Primary 33.25
- DOI: https://doi.org/10.1090/S0025-5718-1966-0193289-6
- MathSciNet review: 0193289