A report on prime numbers of the forms $M=(6a+1)2^{2m-1}-1$ and $M^{’} =(6a-1)2^{2m}-1$
HTML articles powered by AMS MathViewer
- by H. C. Williams and C. R. Zarnke PDF
- Math. Comp. 22 (1968), 420-422 Request permission
References
- Hans Riesel, A note on the prime numbers of the forms $N=(6a+1)2^{2n-1}-1$ and $M=(6a-1)2^{2n}-1$, Ark. Mat. 3 (1956), 245–253. MR 76793, DOI 10.1007/BF02589411
- D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3, 419–448. MR 1502953, DOI 10.2307/1968235
- Wacław Sierpiński, A selection of problems in the theory of numbers, A Pergamon Press Book, The Macmillan Company, New York, 1964. Translated from the Polish by A. Sharma. MR 0170843
- Raphael M. Robinson, A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958), 673–681. MR 96614, DOI 10.1090/S0002-9939-1958-0096614-7
Additional Information
- © Copyright 1968 American Mathematical Society
- Journal: Math. Comp. 22 (1968), 420-422
- MSC: Primary 10.08
- DOI: https://doi.org/10.1090/S0025-5718-1968-0227095-2
- MathSciNet review: 0227095