On the computation of Debye functions of integer orders
Authors:
E. W. Ng and C. J. Devine
Journal:
Math. Comp. 24 (1970), 405-407
MSC:
Primary 65.25
DOI:
https://doi.org/10.1090/S0025-5718-1970-0272160-6
MathSciNet review:
0272160
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An efficient method is presented for the computation of Debye functions of integer orders to twenty significant decimal digits.
- Roger Howard and J. Grindlay, Tables of Debye functions, Canad. J. Phys. 44 (1966), 45–56. MR 186308, DOI https://doi.org/10.1139/p66-003 A. Fletcher, et al, An Index of Mathematical Tables. Vol. I: Introduction, Addison-Wesley, Reading, Mass., 1962, p. 543. MR 26 #365a. Y. L. Luke, The Special Functions and Their Approximations, Vol. 1 & 2, Academic Press, New York, 1968.
- Edward W. Ng, C. J. Devine, and R. F. Tooper, Chebyshev polynomial expansion of Bose-Einstein functions of orders $1$ to $10$, Math. Comp. 23 (1969), 639–643. MR 247739, DOI https://doi.org/10.1090/S0025-5718-1969-0247739-X
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
Retrieve articles in Mathematics of Computation with MSC: 65.25
Retrieve articles in all journals with MSC: 65.25
Additional Information
Keywords:
Debye functions,
Riemann zeta functions,
chemical physics
Article copyright:
© Copyright 1970
American Mathematical Society