Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

The Dirichlet problem for a class of elliptic difference equations
HTML articles powered by AMS MathViewer

by G. T. McAllister PDF
Math. Comp. 25 (1971), 655-673 Request permission

Abstract:

Under suitable assumptions on the order of nonlinearity we prove existence and uniqueness theorems for difference Dirichlet problems of divergence type. We also show that the discrete solutions converge to a solution of the continuous problem. We do not assume that our equation comes from a variational problem. Some of our results are constructive or allow for the application of constructive methods.
References
  • R. Courant, K. Friedrichs, and H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann. 100 (1928), no. 1, 32–74 (German). MR 1512478, DOI 10.1007/BF01448839
  • C. W. Cryer, The difference analogue of Gauss’ theorem, SIAM J. Numer. Anal. 4 (1967), 155–162. MR 213763, DOI 10.1137/0704015
  • Jens Frehse, Existenz und Konvergenz von Löungen nichtlinearer elliptischer Differenzengleichungen unter Dirichletrandbedingungen, Math. Z. 109 (1969), 311–343 (German). MR 247776, DOI 10.1007/BF01110121
  • Avner Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. MR 0445088
  • N. N. Gudovič, The application of the difference method to the solution of nonlinear elliptic equations, Dokl. Akad. Nauk SSSR 179 (1968), 1257–1260 (Russian). MR 0228810
  • W. von Koppenfels, Über die Existenz der Lösungen linearer partieller Differentialgleichungen vom elliptischen Typus, Dissertation, Göttingen, 1929.
  • O. A. Ladyženskaja, The method of finite differences in the theory of partial differential equations, Amer. Math. Soc. Transl. (2) 20 (1962), 77–104. MR 0136881
  • O. A. Ladyženskaya & N. N. Ural’ceva, Linear and Quasilinear Differential Equations of Elliptic Type, “Nauka,” Moscow, 1964; English transl., Academic Press, New York, 1968. MR 35 #1955; MR 39 #5941.
  • G. T. McAllister, An application of a priori bounds on difference quotients to a constructive solution of mildly quasilinear Dirichlet problems, J. Math. Anal. Appl. 24 (1968), 582–607. MR 234647, DOI 10.1016/0022-247X(68)90012-7
  • G. T. McAllister, Dirichlet problems for mildly nonlinear elliptic difference equations, J. Math. Anal. Appl. 27 (1969), 338–366. MR 254450, DOI 10.1016/0022-247X(69)90053-5
  • Charles B. Morrey Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math. (N.S.) 1 (1943), 1–130. MR 11537
  • Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511
  • I. G. Petrowsky & K. N. Smirnoff, “Sur une condition suffisante pour qu’une famille de fonctions soit également continue,” Bull. Univ. Moscow Sect. A Math. Mech., v. 10, 1938, pp. 1-15.
  • S. Soboleff, Sur l’évaluation de quelques sommes pour une fonction définie sur un réseau, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 5–16 (Russian, with French summary). MR 0001788
  • Friedrich Stummel, Elliptische Differenzenoperatoren unter Dirichletranbedingungen, Math. Z. 97 (1967), 169–211 (German). MR 224302, DOI 10.1007/BF01111697
  • B. A. Vertgeĭm, The approximate determination of fixed points of continuous mappings. , Dokl. Akad. Nauk SSSR 191 (1970), 9–11 (Russian). MR 0263235
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 39A12, 35J20
  • Retrieve articles in all journals with MSC: 39A12, 35J20
Additional Information
  • © Copyright 1971 American Mathematical Society
  • Journal: Math. Comp. 25 (1971), 655-673
  • MSC: Primary 39A12; Secondary 35J20
  • DOI: https://doi.org/10.1090/S0025-5718-1971-0306747-X
  • MathSciNet review: 0306747