On the Gaussian integration of Chebyshev polynomials
HTML articles powered by AMS MathViewer
- by A. R. Curtis and P. Rabinowitz PDF
- Math. Comp. 26 (1972), 207-211 Request permission
Abstract:
It is shown that as $m$ tends to infinity, the error in the integration of the Chebyshev polynomial of the first kind, ${T_{(4m + 2)j \pm 2l}}(x)$, by an $m$-point Gauss integration rule approaches ${( - 1)^j} \cdot 2/(4{l^2} - 1),l = 0,1, \cdots ,m - 1$, and ${( - 1)^j} \cdot \pi /2,l = m$, for all $j$.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- M. M. Chawla, Asymptotic estimates for the error of the Gauss-Legendre quadrature formula, Comput. J. 11 (1968/69), 339–340. MR 237096, DOI 10.1093/comjnl/11.3.339
- D. Nicholson, P. Rabinowitz, Nira Richter-Dyn, and D. Zeilberger, On the error in the numerical integration of Chebyshev polynomials, Math. Comp. 25 (1971), 79–86. MR 300443, DOI 10.1090/S0025-5718-1971-0300443-0
- Philip Rabinowitz, Error bounds in Gaussian integration of functions of low-order continuity, Math. Comp. 22 (1968), 431–434. MR 226861, DOI 10.1090/S0025-5718-1968-0226861-7 P. Rabinowitz, “Gaussian integration of functions with branch point singularities,” Internat. J. Comput. Math., v. 2, 1970, pp. 297-306. P. Rabinowitz, “Avoiding the singularity in numerical integration” (In preparation.)
- Philip Rabinowitz and Nira Richter, New error coefficients for estimating quadrature errors for analytic functions, Math. Comp. 24 (1970), 561–570. MR 275675, DOI 10.1090/S0025-5718-1970-0275675-X
- Gabor Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1959. Revised ed. MR 0106295
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Math. Comp. 26 (1972), 207-211
- MSC: Primary 65D30
- DOI: https://doi.org/10.1090/S0025-5718-1972-0298934-5
- MathSciNet review: 0298934