Stability of parabolic difference approximations to certain mixed initial boundary value problems
Author:
Stanley Osher
Journal:
Math. Comp. 26 (1972), 13-39
MSC:
Primary 65M10
DOI:
https://doi.org/10.1090/S0025-5718-1972-0298990-4
MathSciNet review:
0298990
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We consider the equation \[ {u_t} - a(x,t){u_{xx}} - b(x,t){u_x} - c(x,t)u = f(x,t)\] in a region $0 \leqq x \leqq 1,t \geqq 0$, with inhomogeneous initial and boundary data. We are concerned with stability and estimates on divided differences in the maximum norm for solutions of consistent implicit, multistep, parabolic difference approximations to this problem. Using a parametrix approach, we give sufficient conditions for certain estimates to be valid.
- Avner Friedman, Partial differential equations of parabolic type, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964. MR 0181836
- Heinz-Otto Kreiss, Stability theory for difference approximations of mixed initial boundary value problems. I, Math. Comp. 22 (1968), 703–714. MR 241010, DOI https://doi.org/10.1090/S0025-5718-1968-0241010-7
- S. J. Osher, Maximum norm stability for parabolic difference schemes in half-space, Hyperbolic equations and waves (Rencontres, Battelle Res. Inst., Seattle, Wash., 1968) Springer, Berlin, 1970, pp. 61–75. MR 0657803
- Stanley Osher, Systems of difference equations with general homogeneous boundary conditions, Trans. Amer. Math. Soc. 137 (1969), 177–201. MR 237982, DOI https://doi.org/10.1090/S0002-9947-1969-0237982-4
- Stanley Osher, Mesh refinements for the heat equation, SIAM J. Numer. Anal. 7 (1970), 199–205. MR 266451, DOI https://doi.org/10.1137/0707013
- Gilbert Strang, Wiener-Hopf difference equations, J. Math. Mech. 13 (1964), 85–96. MR 0160335
- Gilbert Strang, Implicit difference methods for initial-boundary value problems, J. Math. Anal. Appl. 16 (1966), 188–198. MR 205496, DOI https://doi.org/10.1016/0022-247X%2866%2990196-X
- Olof B. Widlund, Stability of parabolic difference schemes in the maximum norm, Numer. Math. 8 (1966), 186–202. MR 196965, DOI https://doi.org/10.1007/BF02163187
- Olof B. Widlund, On the rate of convergence for parabolic difference schemes. I, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 60–73. MR 0264867
- Olof B. Widlund, On the rate of convergence for parabolic difference schemes. I, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 60–73. MR 0264867
- J. M. Varah, Maximum norm stability of difference approximations to the mixed initial boundary-value problem for the heat equation, Math. Comp. 24 (1970), 31–44. MR 260215, DOI https://doi.org/10.1090/S0025-5718-1970-0260215-1
- J. M. Varah, Stability of difference approximations to the mixed initial boundary value problems for parabolic systems, SIAM J. Numer. Anal. 8 (1971), 598–615. MR 300475, DOI https://doi.org/10.1137/0708057
Retrieve articles in Mathematics of Computation with MSC: 65M10
Retrieve articles in all journals with MSC: 65M10
Additional Information
Keywords:
Stability,
difference methods,
parabolic,
initial boundary value problem
Article copyright:
© Copyright 1972
American Mathematical Society