Note on representing a prime as a sum of two squares
Author:
John Brillhart
Journal:
Math. Comp. 26 (1972), 1011-1013
MSC:
Primary 10A25; Secondary 10A30
DOI:
https://doi.org/10.1090/S0025-5718-1972-0314745-6
MathSciNet review:
0314745
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An improvement is given to the method of Hermite for finding $a$ and $b$ in $p = {a^2} + {b^2}$, where $p$ is a ${\text {prime}} \equiv 1\pmod 4$.
-
C. Hermite, “Note au sujet de l’article précédent,” J. Math. Pures Appl., v. 1848, p. 15; also: “Note sur un théorème rélatif aux nombres entières,” Oevres. Vol. 1, p. 264.
- D. H. Lehmer, Computer technology applied to the theory of numbers, Studies in Number Theory, Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.), 1969, pp. 117–151. MR 0246815
- Oskar Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, N. Y., 1950 (German). 2d ed. MR 0037384 J. A. Serret, “Sur un théorème rélatif aux nombres entières,” J. Math. Pures Appl., v. 1848, pp. 12-14. D. Shanks, Review of “A table of Gaussian primes,” by L. G. Diehl and J. H. Jordan, Math. Comp., v. 21, 1967, pp. 260-262.
Retrieve articles in Mathematics of Computation with MSC: 10A25, 10A30
Retrieve articles in all journals with MSC: 10A25, 10A30
Additional Information
Keywords:
Algorithm,
sum of two squares
Article copyright:
© Copyright 1972
American Mathematical Society