Implementation and analysis of the Todd-Coxeter algorithm

Authors:
John J. Cannon, Lucien A. Dimino, George Havas and Jane M. Watson

Journal:
Math. Comp. **27** (1973), 463-490

MSC:
Primary 20-04

DOI:
https://doi.org/10.1090/S0025-5718-1973-0335610-5

MathSciNet review:
0335610

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A recent form of the Todd-Coxeter algorithm, known as the lookahead algorithm, is described. The time and space requirements for this algorithm are shown experimentally to be usually either equivalent or superior to the Felsch and Haselgrove-Leech-Trotter algorithms. Some findings from an experimental study of the behaviour of Todd-Coxeter programs in a variety of situations are given.

- M. J. Beetham,
*A set of generators and relations for the group ${\rm PSL}(2,\,q),\,q$ odd*, J. London Math. Soc. (2)**3**(1971), 554–557. MR**285588**, DOI https://doi.org/10.1112/jlms/s2-3.3.554
A. Brunner, Personal communication.
- C. M. Campbell,
*Some examples using coset enumeration*, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 37–41. MR**0254131**
H. S. M. Coxeter, "The abstract groups ${R^m} = {S^m} = {({R^j}{S^j})^{{p_j}}} = 1,{S^m} = {T^2} = {({S^j}T)^{2pj}} = 1$ and ${S^m} = {T^2} = {({S^{ - j}}T{S^j}T)^{{p_j}}} = 1$," - H. S. M. Coxeter,
*The abstract groups $G^{m,n,p}$*, Trans. Amer. Math. Soc.**45**(1939), no. 1, 73–150. MR**1501984**, DOI https://doi.org/10.1090/S0002-9947-1939-1501984-9 - H. S. M. Coxeter and W. O. J. Moser,
*Generators and relations for discrete groups*, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR**0088489**
L. A. Dimino, "A graphical approach to coset enumeration," - H. Felsch,
*Programmierung der Restklassenabzählung einer Gruppe nach Untergruppen*, Numer. Math.**3**(1961), 250–256 (German). MR**134435**, DOI https://doi.org/10.1007/BF01386025
M. J. T. Guy, - Graham Higman and John McKay,
*On Janko’s simple group of order $50,232,960$*, Bull. London Math. Soc.**1**(1969), 89–94; correction, ibid. 1 (1969), 219. MR**246955**, DOI https://doi.org/10.1112/blms/1.1.89 - John Leech,
*Coset enumeration on digital computers*, Proc. Cambridge Philos. Soc.**59**(1963), 257–267. MR**146994**, DOI https://doi.org/10.1017/s0305004100036872 - John Leech,
*Generators for certain normal subgroups of $(2,\,3,\,7)$*, Proc. Cambridge Philos. Soc.**61**(1965), 321–332. MR**174621**, DOI https://doi.org/10.1017/s0305004100003923 - John Leech,
*Coset enumeration*, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 21–35. MR**0254133** - John Leech,
*Note on a conjecture of Coxeter*, Proc. Glasgow Math. Assoc.**5**(1960), 25–29 (1961) (French). MR**150193** - I. D. Macdonald,
*On a class of finitely presented groups*, Canadian J. Math.**14**(1962), 602–613. MR**140574**, DOI https://doi.org/10.4153/CJM-1962-051-5 - John McKay and David Wales,
*The multipliers of the simple groups of order $604,800$ and $50,232,960$*, J. Algebra**17**(1971), 262–272. MR**274577**, DOI https://doi.org/10.1016/0021-8693%2871%2990033-0 - N. S. Mendelsohn,
*An algorithmic solution for a word problem in group theory*, Canadian J. Math.**16**(1964), 509–516. MR**163949**, DOI https://doi.org/10.4153/CJM-1964-052-3 - Dietmar Garbe and Jens L. Mennicke,
*Some remarks on the Mathieu groups*, Canad. Math. Bull.**7**(1964), 201–212. MR**162846**, DOI https://doi.org/10.4153/CMB-1964-018-3
B. H. Neumann, Personal communication.
J. A. Todd & H. S. M. Coxeter, "A practical method for enumerating cosets of a finite abstract group," - H. F. Trotter,
*A machine program for coset enumeration*, Canad. Math. Bull.**7**(1964), 357–368. MR**168151**, DOI https://doi.org/10.4153/CMB-1964-033-x
J. M. Watson,

*Proc. London Math. Soc.*(2), v. 41, 1936, pp. 278-301.

*SIGSAM Bulletin*, v. 19, 1971, pp. 8-43.

*Coset Enumeration*, Lecture delivered at the Conference on Computational Problems in Abstract Algebra, Oxford, 29 August-2 September, 1967.

*Proc. Edinburgh Math. Soc.*, v. 5, 1936, pp. 26-34.

*An Extended Todd-Coxeter Algorithm*, Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, 1971, 15 pages.

Retrieve articles in *Mathematics of Computation*
with MSC:
20-04

Retrieve articles in all journals with MSC: 20-04

Additional Information

Keywords:
Todd-Coxeter algorithm,
generators and relations,
group theory

Article copyright:
© Copyright 1973
American Mathematical Society