## Semidiscrete least-squares methods for second order parabolic problems with nonhomogenous data

HTML articles powered by AMS MathViewer

- by J. Thomas King PDF
- Math. Comp.
**28**(1974), 405-411 Request permission

## Abstract:

Recently, Bramble and Thomée proposed semidiscrete least-squares methods for the heat equation. In this paper we extend these methods to variable coefficient parabolic operators with nonhomogeneous equations and boundary conditions.## References

- Shmuel Agmon,
*Lectures on elliptic boundary value problems*, Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. MR**0178246**
I. Babuška, - James H. Bramble and Alfred H. Schatz,
*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**267788**, DOI 10.1002/cpa.3160230408 - J. H. Bramble and S. R. Hilbert,
*Bounds for a class of linear functionals with applications to Hermite interpolation*, Numer. Math.**16**(1970/71), 362–369. MR**290524**, DOI 10.1007/BF02165007 - J. H. Bramble and S. R. Hilbert,
*Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation*, SIAM J. Numer. Anal.**7**(1970), 112–124. MR**263214**, DOI 10.1137/0707006 - James H. Bramble and Vidar Thomée,
*Semidiscrete least-squares methods for a parabolic boundary value problem*, Math. Comp.**26**(1972), 633–648. MR**349038**, DOI 10.1090/S0025-5718-1972-0349038-4 - James H. Bramble and Miloš Zlámal,
*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**282540**, DOI 10.1090/S0025-5718-1970-0282540-0 - Jim Douglas Jr. and Todd Dupont,
*Galerkin methods for parabolic equations*, SIAM J. Numer. Anal.**7**(1970), 575–626. MR**277126**, DOI 10.1137/0707048
S. Hilbert, - J. Thomas King,
*The approximate solution of parabolic initial boundary value problems by weighted least-squares methods*, SIAM J. Numer. Anal.**9**(1972), 215–229. MR**305626**, DOI 10.1137/0709020 - O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural′ceva,
*Lineĭ nye i kvazilineĭ nye uravneniya parabolicheskogo tipa*, Izdat. “Nauka”, Moscow, 1967 (Russian). MR**0241821** - Harvey S. Price and Richard S. Varga,
*Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics*, Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 74–94. MR**0266452** - Martin H. Schultz,
*Approximation theory of multivariate spline functions in Sobolev spaces*, SIAM J. Numer. Anal.**6**(1969), 570–582. MR**263218**, DOI 10.1137/0706052 - Blair Swartz and Burton Wendroff,
*Generalized finite-difference schemes*, Math. Comp.**23**(1969), 37–49. MR**239768**, DOI 10.1090/S0025-5718-1969-0239768-7

*Approximation by Hill Functions*, University of Maryland Technical Note BN-648, 1970.

*Numerical Methods for Elliptic Boundary Value Problems*, Doctoral Thesis, University of Maryland, College Park, Md., 1969.

## Additional Information

- © Copyright 1974 American Mathematical Society
- Journal: Math. Comp.
**28**(1974), 405-411 - MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1974-0373323-5
- MathSciNet review: 0373323