On small zeros of Dirichlet -functions

Author:
Peter J. Weinberger

Journal:
Math. Comp. **29** (1975), 319-328

MSC:
Primary 10H10; Secondary 10-04

DOI:
https://doi.org/10.1090/S0025-5718-1975-0376564-7

MathSciNet review:
0376564

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A method is given for calculating the value of Dirichlet *L*-functions near the real axis in the critical strip. As an application, some zeros for zeta functions of complex quadratic fields are calculated.

**[1]**J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld,*Rigorous computation and the zeros of the Riemann zeta-function. (With discussion)*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR**0258245****[2]**H. L. Montgomery and P. J. Weinberger,*Notes on small class numbers*, Acta Arith.**24**(1973/74), 529–542. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth birthday, V. MR**0357373**, https://doi.org/10.4064/aa-24-5-529-542**[3]**D. Davies and C. B. Haselgrove,*The evaluation of Dirichlet 𝐿-functions*, Proc. Roy. Soc. Ser. A**264**(1961), 122–132. MR**0136052****[4]**D. Davies,*An approximate functional equation for Dirichlet 𝐿-functions*, Proc. Roy. Soc. Ser. A**284**(1965), 224–236. MR**0173352****[5]**D. H. Lehmer,*Extended computation of the Riemann zeta-function*, Mathematika**3**(1956), 102–108. MR**0086083**, https://doi.org/10.1112/S0025579300001753**[6]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[7]**A. H. Stroud and Don Secrest,*Gaussian quadrature formulas*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1966. MR**0202312****[8]**Harold Davenport,*Multiplicative number theory*, Lectures given at the University of Michigan, Winter Term, vol. 1966, Markham Publishing Co., Chicago, Ill., 1967. MR**0217022****[9]**M. E. Low,*Real zeros of the Dedekind zeta function of an imaginary quadratic field*, Acta Arith**14**(1967/1968), 117–140. MR**0236127**, https://doi.org/10.4064/aa-14-2-117-140**[10]**G. PURDY, "The real zeros of the Epstein zeta function." (To appear).

Retrieve articles in *Mathematics of Computation*
with MSC:
10H10,
10-04

Retrieve articles in all journals with MSC: 10H10, 10-04

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0376564-7

Article copyright:
© Copyright 1975
American Mathematical Society