## Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$

HTML articles powered by AMS MathViewer

- by J. Barkley Rosser and Lowell Schoenfeld PDF
- Math. Comp.
**29**(1975), 243-269 Request permission

## Abstract:

The authors demonstrate a wider zero-free region for the Riemann zeta function than has been given before. They give improved methods for using this and a recent determination that the first 3,502,500 zeros lie on the critical line to develop better bounds for functions of primes.## References

- Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642**
KENNETH I. APPEL & J. BARKLEY ROSSER, - H. M. Edwards,
*Riemann’s zeta function*, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR**0466039** - Steven H. French,
*Trigonometric polynomials in prime number theory*, Illinois J. Math.**10**(1966), 240–248. MR**214555** - A. E. Ingham,
*The distribution of prime numbers*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR**1074573**
LANDAU, - R. Sherman Lehman,
*On the difference $\pi (x)-\textrm {li}(x)$*, Acta Arith.**11**(1966), 397–410. MR**202686**, DOI 10.4064/aa-11-4-397-410 - R. Sherman Lehman,
*On the distribution of zeros of the Riemann zeta-function*, Proc. London Math. Soc. (3)**20**(1970), 303–320. MR**258768**, DOI 10.1112/plms/s3-20.2.303 - D. H. Lehmer,
*On the roots of the Riemann zeta-function*, Acta Math.**95**(1956), 291–298. MR**86082**, DOI 10.1007/BF02401102 - D. H. Lehmer,
*Extended computation of the Riemann zeta-function*, Mathematika**3**(1956), 102–108. MR**86083**, DOI 10.1112/S0025579300001753
NBS #55, see Abramowitz and Stegun of this Bibliography.
BARKLEY ROSSER, "The - Barkley Rosser,
*Explicit bounds for some functions of prime numbers*, Amer. J. Math.**63**(1941), 211–232. MR**3018**, DOI 10.2307/2371291 - J. Barkley Rosser,
*Explicit remainder terms for some asymptotic series*, J. Rational Mech. Anal.**4**(1955), 595–626. MR**72969**, DOI 10.1512/iumj.1955.4.54021 - J. Barkley Rosser,
*A Runge-Kutta for all seasons*, SIAM Rev.**9**(1967), 417–452. MR**219242**, DOI 10.1137/1009069
R—S. See next entry.
- J. Barkley Rosser and Lowell Schoenfeld,
*Approximate formulas for some functions of prime numbers*, Illinois J. Math.**6**(1962), 64–94. MR**137689** - J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld,
*Rigorous computation and the zeros of the Riemann zeta-function. (With discussion)*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR**0258245** - S. B. Stečkin,
*Certain extremal properties of positive trigonometric polynomials*, Mat. Zametki**7**(1970), 411–422 (Russian). MR**263755** - S. B. Stečkin,
*The zeros of the Riemann zeta-function*, Mat. Zametki**8**(1970), 419–429 (Russian). MR**280448** - E. T. Whittaker and G. N. Watson,
*A course of modern analysis*, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR**1424469**, DOI 10.1017/CBO9780511608759

*Table for Estimating Functions of Primes*, Communications Research Division Technical Report No. 4, Institute for Defense Analyses, Princeton, N. J., 1961.

*Handbuch der Lehre von der Verteilung der Primzahlen*, 2 vols., Teubner, Leipzig, 1909; reprint, Chelsea, New York, 1953.

*n*-th prime is greater than $n \log n$,"

*Proc. London Math. Soc.*(2), v. 45, 1939, pp. 21-44.

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Math. Comp.
**29**(1975), 243-269 - MSC: Primary 10H05
- DOI: https://doi.org/10.1090/S0025-5718-1975-0457373-7
- MathSciNet review: 0457373