Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$
HTML articles powered by AMS MathViewer
- by J. Barkley Rosser and Lowell Schoenfeld PDF
- Math. Comp. 29 (1975), 243-269 Request permission
Abstract:
The authors demonstrate a wider zero-free region for the Riemann zeta function than has been given before. They give improved methods for using this and a recent determination that the first 3,502,500 zeros lie on the critical line to develop better bounds for functions of primes.References
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642 KENNETH I. APPEL & J. BARKLEY ROSSER, Table for Estimating Functions of Primes, Communications Research Division Technical Report No. 4, Institute for Defense Analyses, Princeton, N. J., 1961.
- H. M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039
- Steven H. French, Trigonometric polynomials in prime number theory, Illinois J. Math. 10 (1966), 240–248. MR 214555
- A. E. Ingham, The distribution of prime numbers, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. Reprint of the 1932 original; With a foreword by R. C. Vaughan. MR 1074573 LANDAU, Handbuch der Lehre von der Verteilung der Primzahlen, 2 vols., Teubner, Leipzig, 1909; reprint, Chelsea, New York, 1953.
- R. Sherman Lehman, On the difference $\pi (x)-\textrm {li}(x)$, Acta Arith. 11 (1966), 397–410. MR 202686, DOI 10.4064/aa-11-4-397-410
- R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 258768, DOI 10.1112/plms/s3-20.2.303
- D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI 10.1007/BF02401102
- D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102–108. MR 86083, DOI 10.1112/S0025579300001753 NBS #55, see Abramowitz and Stegun of this Bibliography. BARKLEY ROSSER, "The n-th prime is greater than $n \log n$," Proc. London Math. Soc. (2), v. 45, 1939, pp. 21-44.
- Barkley Rosser, Explicit bounds for some functions of prime numbers, Amer. J. Math. 63 (1941), 211–232. MR 3018, DOI 10.2307/2371291
- J. Barkley Rosser, Explicit remainder terms for some asymptotic series, J. Rational Mech. Anal. 4 (1955), 595–626. MR 72969, DOI 10.1512/iumj.1955.4.54021
- J. Barkley Rosser, A Runge-Kutta for all seasons, SIAM Rev. 9 (1967), 417–452. MR 219242, DOI 10.1137/1009069 R—S. See next entry.
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function. (With discussion), Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR 0258245
- S. B. Stečkin, Certain extremal properties of positive trigonometric polynomials, Mat. Zametki 7 (1970), 411–422 (Russian). MR 263755
- S. B. Stečkin, The zeros of the Riemann zeta-function, Mat. Zametki 8 (1970), 419–429 (Russian). MR 280448
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Additional Information
- © Copyright 1975 American Mathematical Society
- Journal: Math. Comp. 29 (1975), 243-269
- MSC: Primary 10H05
- DOI: https://doi.org/10.1090/S0025-5718-1975-0457373-7
- MathSciNet review: 0457373