Two-parameter, arbitrary order, exponential approximations for stiff equations
Authors:
Byron L. Ehle and Zdenek Picel
Journal:
Math. Comp. 29 (1975), 501-511
MSC:
Primary 65L99; Secondary 65D15
DOI:
https://doi.org/10.1090/S0025-5718-1975-0375737-7
MathSciNet review:
0375737
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A two-parameter family of approximations to the exponential function is considered. Constraints on the parameters are determined which guarantee the approximations are A-acceptable. The suitability of these approximations for 2-point A-stable exponential fitting is established. Several numerical methods, which produce these approximations when solving , are presented.
- [1] Theodore A. Bickart and Zdenek Picel, High order stiffly stable composite multistep methods for numerical integration of stiff differential equations, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 272–286. MR 327043, https://doi.org/10.1007/bf01951938
- [2] J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50–64. MR 159424, https://doi.org/10.1090/S0025-5718-1964-0159424-9
- [3] F. H. Chipman, 𝐴-stable Runge-Kutta processes, Nordisk Tidskr. Informationsbehandling (BIT) 11 (1971), 384–388. MR 295582, https://doi.org/10.1007/bf01939406
- [4] Germund G. Dahlquist, A special stability problem for linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 3 (1963), 27–43. MR 170477, https://doi.org/10.1007/bf01963532
- [5] Byron L. Ehle, 𝐴-stable methods and Padé approximations to the exponential, SIAM J. Math. Anal. 4 (1973), 671–680. MR 331787, https://doi.org/10.1137/0504057
- [6] Byron L. Ehle, High order 𝐴-stable methods for the numerical solution of systems of D.E.’s, Nordisk Tidskr. Informationsbehandling (BIT) 8 (1968), 276–278. MR 239762, https://doi.org/10.1007/bf01933437
- [7] B. L. EHLE, Some Results on Exponential Approximation and Stiff Equations, Univ. of Victoria Res. Rep. #77, Victoria, B. C., Canada, January 1974.
- [8] B. L. EHLE, On Padé Approximations to the Exponential Function and A-Stable Methods for the Numerical Solution of Initial Value Problems, Res. Rep. CSRR2010, Dept. of Appl. Anal. and Comput. Sci., University of Waterloo, Canada.
- [9] P. M. Hummel and C. L. Seebeck Jr., A generalization of Taylor’s expansion, Amer. Math. Monthly 56 (1949), 243–247. MR 28907, https://doi.org/10.2307/2304764
- [10] R. K. Jain, Some 𝐴-stable methods for stiff ordinary differential equations, Math. Comp. 26 (1972), 71–77. MR 303733, https://doi.org/10.1090/S0025-5718-1972-0303733-1
- [11] Allan M. Krall, The root locus method: A survey, SIAM Rev. 12 (1970), 64–72. MR 260452, https://doi.org/10.1137/1012002
- [12] J. Douglas Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal. 4 (1967), 372–380. MR 221759, https://doi.org/10.1137/0704033
- [13] J. D. LAWSON & B. L. EHLE, Improved Generalized Runge-Kutta, Proc. Canadian Computer Conference, Montreal, June 1972.
- [14] H. A. Watts and L. F. Shampine, 𝐴-stable block implicit one-step methods, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 252–266. MR 307483, https://doi.org/10.1007/bf01932819
- [15] Richard S. Varga, On higher order stable implicit methods for solving parabolic partial differential equations, J. Math. and Phys. 40 (1961), 220–231. MR 140191
Retrieve articles in Mathematics of Computation with MSC: 65L99, 65D15
Retrieve articles in all journals with MSC: 65L99, 65D15
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1975-0375737-7
Keywords:
A-acceptable,
exponential fitting,
stiff equations
Article copyright:
© Copyright 1975
American Mathematical Society