On the osculatory rational interpolation problem

Author:
Luc Wuytack

Journal:
Math. Comp. **29** (1975), 837-843

MSC:
Primary 65D05

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371008-3

MathSciNet review:
0371008

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of the existence and construction of a table of osculating rational functions ${r_{1,m}}$ for $1,m \geqslant 0$ is considered. First, a survey is given of some results from the theory of osculatory rational interpolation of order ${s_i} - 1$ at points ${x_i}$ for $i \geqslant 0$. Using these results, we prove the existence of continued fractions of the form \[ {c_0} + {c_1} \cdot (x - {y_0}) + \ldots + {c_k} \cdot (x - {y_0}) \ldots (x - {y_{k - 1}}) + \frac {{{c_{k + 1}} \cdot (x - {y_0}) \ldots (x - {y_k})}}{1} + \frac {{{c_{k + 2}} \cdot (x - {y_{k + 1}})}}{1} + \frac {{{c_{k + 3}} \cdot (x - {y_{k + 2}})}}{1} + \ldots ,\] with the ${y_k}$ suitably selected from among the ${x_i}$, whose convergents form the elements ${r_{k,0}},{r_{k + 1,0}},{r_{k + 1,1}},{r_{k + 2,1}}, \ldots$ of the table. The properties of these continued fractions make it possible to derive an algorithm for constructing their coefficients ${c_i}$ for $i \geqslant 0$. This algorithm is a generalization of the *qd*-algorithm.

- S. W. Kahng,
*Osculatory interpolation*, Math. Comp.**23**(1969), 621–629. MR**247732**, DOI https://doi.org/10.1090/S0025-5718-1969-0247732-7 - L. M. Milne-Thomson,
*The Calculus of Finite Differences*, Macmillan and Co., Ltd., London, 1951. MR**0043339** - Herbert E. Salzer,
*Note on osculatory rational interpolation*, Math. Comp.**16**(1962), 486–491. MR**149648**, DOI https://doi.org/10.1090/S0025-5718-1962-0149648-7 - T. P. Angelitch, G. Aumann, F. L. Bauer, R. Bulirsch, H. P. Künzi, H. Rutishauser, K. Samelson, R. Sauer, and J. Stoer,
*Mathematische Hilfsmittel des Ingenieurs. Teil III*, Die Grundlehren der mathematischen Wissenschaften, Band 141, Springer-Verlag, Berlin-New York, 1968 (German). Herausgegeben von R. Sauer und I. Szabó; Unter Mitwirkung von H. Neuber, W. Nürnberg, K. Pöschl, E. Truckenbrodt und W. Zander. MR**0231562**
H. C. THACHER, JR., "A recursive procedure for osculatory interpolation by rational functions." (Unpublished manuscript.)
- Luc Wuytack,
*An algorithm for rational interpolation similar to the $qd$-algorithm*, Numer. Math.**20**(1972/73), 418–424. MR**324873**, DOI https://doi.org/10.1007/BF01402564 - Luc Wuytack,
*On some aspects of the rational interpolation problem*, SIAM J. Numer. Anal.**11**(1974), 52–60. MR**340890**, DOI https://doi.org/10.1137/0711007

Retrieve articles in *Mathematics of Computation*
with MSC:
65D05

Retrieve articles in all journals with MSC: 65D05

Additional Information

Article copyright:
© Copyright 1975
American Mathematical Society