A note on $1$-class groups of number fields
Author:
Frank Gerth
Journal:
Math. Comp. 29 (1975), 1135-1137
MSC:
Primary 12A35; Secondary 12A50, 12A30
DOI:
https://doi.org/10.1090/S0025-5718-1975-0409406-1
MathSciNet review:
0409406
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let F be a number field and K a cyclic extension of degree l over F, where l is a rational prime. The l-class group of K is analyzed as a ${\operatorname {Gal}}(K/F)$-module in the case where the l-class group of F is trivial. The resulting structure theorem is used to compute the structure of the 3-class groups of certain cyclic cubic fields that are discussed in a paper of D. Shanks.
-
G. GRAS, Sur les l-Classes d’Idéaux dans les Extensions Cycliques Relative de Degré Premier l, Thesis, Grenoble, 1972.
C. S. HERZ, Construction of Class Fields, Seminar on Complex Multiplication, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966.
- Eizi Inaba, Über die Struktur der $l$-Klassengruppe zyklischer Zahlkörper vom Primzahlgrad $l$, J. Fac. Sci. Imp. Univ. Tokyo Sect. I. 4 (1940), 61–115 (German). MR 0002999
- Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI https://doi.org/10.1090/S0025-5718-1974-0352049-8 W. ZINK, Thesis, Akademie der Wissenschaften der DDR, Berlin.
Retrieve articles in Mathematics of Computation with MSC: 12A35, 12A50, 12A30
Retrieve articles in all journals with MSC: 12A35, 12A50, 12A30
Additional Information
Article copyright:
© Copyright 1975
American Mathematical Society