Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



A note on $1$-class groups of number fields

Author: Frank Gerth
Journal: Math. Comp. 29 (1975), 1135-1137
MSC: Primary 12A35; Secondary 12A50, 12A30
MathSciNet review: 0409406
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let F be a number field and K a cyclic extension of degree l over F, where l is a rational prime. The l-class group of K is analyzed as a ${\operatorname {Gal}}(K/F)$-module in the case where the l-class group of F is trivial. The resulting structure theorem is used to compute the structure of the 3-class groups of certain cyclic cubic fields that are discussed in a paper of D. Shanks.

References [Enhancements On Off] (What's this?)

    G. GRAS, Sur les l-Classes d’Idéaux dans les Extensions Cycliques Relative de Degré Premier l, Thesis, Grenoble, 1972. C. S. HERZ, Construction of Class Fields, Seminar on Complex Multiplication, Lecture Notes in Math., vol. 21, Springer-Verlag, Berlin and New York, 1966.
  • Eizi Inaba, Ăśber die Struktur der $l$-Klassengruppe zyklischer Zahlkörper vom Primzahlgrad $l$, J. Fac. Sci. Imp. Univ. Tokyo Sect. I. 4 (1940), 61–115 (German). MR 0002999
  • Daniel Shanks, The simplest cubic fields, Math. Comp. 28 (1974), 1137–1152. MR 352049, DOI
  • W. ZINK, Thesis, Akademie der Wissenschaften der DDR, Berlin.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A35, 12A50, 12A30

Retrieve articles in all journals with MSC: 12A35, 12A50, 12A30

Additional Information

Article copyright: © Copyright 1975 American Mathematical Society