## Some stable methods for calculating inertia and solving symmetric linear systems

HTML articles powered by AMS MathViewer

- by James R. Bunch and Linda Kaufman PDF
- Math. Comp.
**31**(1977), 163-179 Request permission

## Abstract:

Several decompositions of symmetric matrices for calculating inertia and solving systems of linear equations are discussed. New partial pivoting strategies for decomposing symmetric matrices are introduced and analyzed.## References

- Jan Ole Aasen,
*On the reduction of a symmetric matrix to tridiagonal form*, Nordisk Tidskr. Informationsbehandling (BIT)**11**(1971), 233–242. MR**288944**, DOI 10.1007/bf01931804 - J. R. Bunch,
*Analysis of the diagonal pivoting method*, SIAM J. Numer. Anal.**8**(1971), 656–680. MR**292280**, DOI 10.1137/0708061 - James R. Bunch,
*Partial pivoting strategies for symmetric matrices*, SIAM J. Numer. Anal.**11**(1974), 521–528. MR**362856**, DOI 10.1137/0711043
J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving symmetric linear systems," Univ. of Colorado Tech. Report 63, CU:CS:06375.
- J. R. Bunch and B. N. Parlett,
*Direct methods for solving symmetric indefinite systems of linear equations*, SIAM J. Numer. Anal.**8**(1971), 639–655. MR**305564**, DOI 10.1137/0708060 - P. A. Businger,
*Monitoring the numerical stability of Gaussian elimination*, Numer. Math.**16**(1970/71), 360–361. MR**284000**, DOI 10.1007/BF02165006 - Richard W. Cottle,
*Manifestations of the Schur complement*, Linear Algebra Appl.**8**(1974), 189–211. MR**354727**, DOI 10.1016/0024-3795(74)90066-4 - L. Mirsky,
*An introduction to linear algebra*, Oxford, at the Clarendon Press, 1955. MR**0074364**
B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose matrix is symmetric but not definite," - J. H. Wilkinson,
*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422**

*BIT*, v. 10, 1970, pp. 386-397.

## Additional Information

- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp.
**31**(1977), 163-179 - MSC: Primary 65F05
- DOI: https://doi.org/10.1090/S0025-5718-1977-0428694-0
- MathSciNet review: 0428694