Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.


An iterative solution method for linear systems of which the coefficient matrix is a symmetric $M$-matrix
HTML articles powered by AMS MathViewer

by J. A. Meijerink and H. A. van der Vorst PDF
Math. Comp. 31 (1977), 148-162 Request permission


A particular class of regular splittings of not necessarily symmetric M-matrices is proposed. If the matrix is symmetric, this splitting is combined with the conjugate-gradient method to provide a fast iterative solution algorithm. Comparisons have been made with other well-known methods. In all test problems the new combination was faster than the other methods.
  • James W. Daniel, The conjugate gradient method for linear and nonlinear operator equations, SIAM J. Numer. Anal. 4 (1967), 10–26. MR 217987, DOI 10.1137/0704002
  • Ky Fan, Note on $M$-matrices, Quart. J. Math. Oxford Ser. (2) 11 (1960), 43–49. MR 117242, DOI 10.1093/qmath/11.1.43
  • Magnus R. Hestenes, The conjugate-gradient method for solving linear systems, Proceedings of Symposia in Applied Mathematics. Vol. VI. Numerical analysis, McGraw-Hill Book Company, Inc., New York, for the American Mathematical Society, Providence, R.I., 1956, pp. 83–102. MR 0084178
  • H. S. PRICE & K. H. COATS, "Direct methods in reservoir simulation," Soc. Petroleum Engrs. J., v. 14, 1974, pp. 295-308.
  • J. K. Reid, The use of conjugate gradients for systems of linear equations possessing “Property A”, SIAM J. Numer. Anal. 9 (1972), 325–332. MR 305567, DOI 10.1137/0709032
  • Herbert L. Stone, Iterative solution of implicit approximations of multidimensional partial differential equations, SIAM J. Numer. Anal. 5 (1968), 530–558. MR 238504, DOI 10.1137/0705044
  • Richard S. Varga, Matrix iterative analysis, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR 0158502
  • Handbook for automatic computation. Vol. II, Die Grundlehren der mathematischen Wissenschaften, Band 186, Springer-Verlag, New York-Heidelberg, 1971. Linear algebra; Compiled by J. H. Wilkinson and C. Reinsch. MR 0461856
  • J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 65F10
  • Retrieve articles in all journals with MSC: 65F10
Additional Information
  • © Copyright 1977 American Mathematical Society
  • Journal: Math. Comp. 31 (1977), 148-162
  • MSC: Primary 65F10
  • DOI:
  • MathSciNet review: 0438681