Single step Galerkin approximations for parabolic problems
HTML articles powered by AMS MathViewer
- by Garth A. Baker, James H. Bramble and Vidar Thomée PDF
- Math. Comp. 31 (1977), 818-847 Request permission
Abstract:
In this paper we construct and analyze classes of single step methods of arbitrary order for homogeneous linear initial boundary value problems for parabolic equations with time-independent coefficients. The spatial discretization is done by means of general Galerkin-type methods.References
-
J. BLAIR, Approximate Solution of Elliptic and Parabolic Boundary Value Problems, Thesis, University of California, Berkeley, 1970.
- J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp. 31 (1977), no. 137, 94–111. MR 431744, DOI 10.1090/S0025-5718-1977-0431744-9
- J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, DOI 10.1137/0714015
- James H. Bramble and Vidar Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl. (4) 101 (1974), 115–152. MR 388805, DOI 10.1007/BF02417101 M. CROUZEIX, Sur l’Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thesis, University of Paris VI, 1975.
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, DOI 10.1137/0707048
- Todd Dupont, Some $L^{2}$ error estimates for parabolic Galerkin methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 491–504. MR 0403255
- Hans-Peter Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta Math. 13 (1974), 219–235 (German, with English summary). MR 356513, DOI 10.1007/BF01168227
- G. J. Makinson, Stable high order implicit methods for the numerical solution of systems of differential equations, Comput. J. 11 (1968/69), 305–310. MR 235737, DOI 10.1093/comjnl/11.3.305
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- Syvert P. Nørsett, One-step methods of Hermite type for numerical integration of stiff systems, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 63–77. MR 337014, DOI 10.1007/bf01933119
- Vidar Thomée, Some convergence results for Galerkin methods for parabolic boundary value problems, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 55–88. MR 0657811
- Vidar Thomée, High order local approximations to derivatives in the finite element method, Math. Comp. 31 (1977), no. 139, 652–660. MR 438664, DOI 10.1090/S0025-5718-1977-0438664-4
- Mary Fanett Wheeler, A priori $L_{2}$ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, DOI 10.1137/0710062
- Miloš Zlámal, Finite element methods for parabolic equations, Math. Comp. 28 (1974), 393–404. MR 388813, DOI 10.1090/S0025-5718-1974-0388813-9
Additional Information
- © Copyright 1977 American Mathematical Society
- Journal: Math. Comp. 31 (1977), 818-847
- MSC: Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-1977-0448947-X
- MathSciNet review: 0448947