Single step Galerkin approximations for parabolic problems
Authors:
Garth A. Baker, James H. Bramble and Vidar Thomée
Journal:
Math. Comp. 31 (1977), 818-847
MSC:
Primary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-1977-0448947-X
MathSciNet review:
0448947
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we construct and analyze classes of single step methods of arbitrary order for homogeneous linear initial boundary value problems for parabolic equations with time-independent coefficients. The spatial discretization is done by means of general Galerkin-type methods.
- [1] J. BLAIR, Approximate Solution of Elliptic and Parabolic Boundary Value Problems, Thesis, University of California, Berkeley, 1970.
- [2] J. H. Bramble and A. H. Schatz, Higher order local accuracy by averaging in the finite element method, Math. Comp. 31 (1977), no. 137, 94–111. MR 431744, https://doi.org/10.1090/S0025-5718-1977-0431744-9
- [3] J. H. Bramble, A. H. Schatz, V. Thomée, and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, SIAM J. Numer. Anal. 14 (1977), no. 2, 218–241. MR 448926, https://doi.org/10.1137/0714015
- [4] James H. Bramble and Vidar Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl. (4) 101 (1974), 115–152. MR 388805, https://doi.org/10.1007/BF02417101
- [5] M. CROUZEIX, Sur l'Approximation des Équations Différentielles Opérationnelles Linéaires par des Méthodes de Runge-Kutta, Thesis, University of Paris VI, 1975.
- [6] Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations, SIAM J. Numer. Anal. 7 (1970), 575–626. MR 277126, https://doi.org/10.1137/0707048
- [7] Todd Dupont, Some 𝐿² error estimates for parabolic Galerkin methods, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 491–504. MR 0403255
- [8] Hans-Peter Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta Math. 13 (1974), 219–235 (German, with English summary). MR 356513, https://doi.org/10.1007/BF01168227
- [9] G. J. Makinson, Stable high order implicit methods for the numerical solution of systems of differential equations, Comput. J. 11 (1968/69), 305–310. MR 235737, https://doi.org/10.1093/comjnl/11.3.305
- [10] Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, https://doi.org/10.1090/S0025-5718-1974-0373325-9
- [11] Syvert P. Nørsett, One-step methods of Hermite type for numerical integration of stiff systems, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 63–77. MR 337014, https://doi.org/10.1007/bf01933119
- [12] Vidar Thomée, Some convergence results for Galerkin methods for parabolic boundary value problems, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 55–88. Publication No. 33. MR 0657811
- [13] Vidar Thomée, High order local approximations to derivatives in the finite element method, Math. Comp. 31 (1977), no. 139, 652–660. MR 438664, https://doi.org/10.1090/S0025-5718-1977-0438664-4
- [14] Mary Fanett Wheeler, A priori 𝐿₂ error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal. 10 (1973), 723–759. MR 351124, https://doi.org/10.1137/0710062
- [15] Miloš Zlámal, Finite element methods for parabolic equations, Math. Comp. 28 (1974), 393–404. MR 388813, https://doi.org/10.1090/S0025-5718-1974-0388813-9
Retrieve articles in Mathematics of Computation with MSC: 65N30
Retrieve articles in all journals with MSC: 65N30
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1977-0448947-X
Article copyright:
© Copyright 1977
American Mathematical Society