Simultaneous approximation in scales of Banach spaces
HTML articles powered by AMS MathViewer
- by James H. Bramble and Ridgway Scott PDF
- Math. Comp. 32 (1978), 947-954 Request permission
Abstract:
The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods.References
- Ivo Babuška, The finite element method with penalty, Math. Comp. 27 (1973), 221–228. MR 351118, DOI 10.1090/S0025-5718-1973-0351118-5
- I. Babuška and R. B. Kellogg, Nonuniform error estimates for the finite element method, SIAM J. Numer. Anal. 12 (1975), no. 6, 868–875. MR 411201, DOI 10.1137/0712064
- Garth A. Baker, Simplified proofs of error estimates for the least squares method for Dirichlet’s problem, Math. Comp. 27 (1973), 229–235. MR 327056, DOI 10.1090/S0025-5718-1973-0327056-0
- James H. Bramble and Alfred H. Schatz, Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions, Comm. Pure Appl. Math. 23 (1970), 653–675. MR 267788, DOI 10.1002/cpa.3160230408
- J. H. Bramble and A. H. Schatz, Least squares methods for $2m$th order elliptic boundary-value problems, Math. Comp. 25 (1971), 1–32. MR 295591, DOI 10.1090/S0025-5718-1971-0295591-8
- James H. Bramble and Vidar Thomée, Discrete time Galerkin methods for a parabolic boundary value problem, Ann. Mat. Pura Appl. (4) 101 (1974), 115–152. MR 388805, DOI 10.1007/BF02417101
- Paul L. Butzer and Hubert Berens, Semi-groups of operators and approximation, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York, Inc., New York, 1967. MR 0230022
- Jim Douglas Jr. and Todd Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math. 20 (1972/73), 213–237. MR 319379, DOI 10.1007/BF01436565 J. L. LIONS & E. MAGENES , Non-homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, Berlin and New York, 1972.
- Frank Natterer, The finite element method for ill-posed problems, RAIRO Anal. Numér. 11 (1977), no. 3, 271–278. MR 519587, DOI 10.1051/m2an/1977110302711
- Joachim A. Nitsche and Alfred H. Schatz, Interior estimates for Ritz-Galerkin methods, Math. Comp. 28 (1974), 937–958. MR 373325, DOI 10.1090/S0025-5718-1974-0373325-9
- P.-A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 233–264. MR 0345428
- Martin H. Schultz, $L^{2}$ error bounds for the Rayleigh-Ritz-Galerkin method, SIAM J. Numer. Anal. 8 (1971), 737–748. MR 298918, DOI 10.1137/0708067
- Ridgway Scott, Applications of Banach space interpolation to finite element theory, Functional analysis methods in numerical analysis (Proc. Special Session, Annual Meeting, Amer. Math. Soc., St. Louis, Mo., 1977) Lecture Notes in Math., vol. 701, Springer, Berlin, 1979, pp. 298–318. MR 526721
Additional Information
- © Copyright 1978 American Mathematical Society
- Journal: Math. Comp. 32 (1978), 947-954
- MSC: Primary 65N30; Secondary 46M35
- DOI: https://doi.org/10.1090/S0025-5718-1978-0501990-5
- MathSciNet review: 501990