Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2024 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the zeros of the Riemann zeta function in the critical strip
HTML articles powered by AMS MathViewer

by Richard P. Brent PDF
Math. Comp. 33 (1979), 1361-1372 Request permission

Abstract:

We describe a computation which shows that the Riemann zeta function $\zeta (s)$ has exactly 75,000,000 zeros of the form $\sigma + it$ it in the region $0 < t < 32,585,736.4$; all these zeros are simple and lie on the line $\sigma = 1/2$. (A similar result for the first 3,500,000 zeros was established by Rosser, Yohe and Schoenfeld.) Counts of the number of Gram blocks of various types and the number of failures of "Rosser’s rule" are given.
References
    ANONYMOUS, Sperry Univac 1100 Series Fortran V Library Programmer Reference Manual (UP 7876, rev. 4), Sperry Rand Corp., 1974. R. BACKLUND, "Sur les zéros de la fonction $\zeta (s)$ de Riemann," C. R. Acad. Sci. Paris, v. 158, 1914, pp. 1979-1982. R. P. BRENT, "The first 40,000,000 zeros of the Riemann zeta function lie on the critical line," Notices Amer. Math. Soc., v. 24, 1977, p. A-417. R. P. BRENT, "A Fortran multiple precision arithmetic package," ACM Trans. Math. Software, v. 4, 1978, pp. 57-70. F. D. CRARY & J. B. ROSSER, High Precision Coefficients Related to the Zeta Function, MRC Technical Summary Report #1344, Univ. of Wisconsin, Madison, May 1975, 171 pp.; RMT 11, Math. Comp., v. 31, 1977, pp. 803-804.
  • H. M. Edwards, Riemann’s zeta function, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1974. MR 0466039
  • J. -P. Gram, Note sur les zéros de la fonction $\xi (s)$ de Riemann, Acta Math. 27 (1903), no. 1, 289–304 (French). MR 1554986, DOI 10.1007/BF02421310
  • C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • J. I. Hutchinson, On the roots of the Riemann zeta function, Trans. Amer. Math. Soc. 27 (1925), no. 1, 49–60. MR 1501297, DOI 10.1090/S0002-9947-1925-1501297-5
  • A. E. Ingham, The distribution of prime numbers, Cambridge Tracts in Mathematics and Mathematical Physics, No. 30, Stechert-Hafner, Inc., New York, 1964. MR 0184920
  • R. Sherman Lehman, Separation of zeros of the Riemann zeta-function, Math. Comp. 20 (1966), 523–541. MR 203909, DOI 10.1090/S0025-5718-1966-0203909-5
  • R. Sherman Lehman, On the distribution of zeros of the Riemann zeta-function, Proc. London Math. Soc. (3) 20 (1970), 303–320. MR 258768, DOI 10.1112/plms/s3-20.2.303
  • D. H. Lehmer, Extended computation of the Riemann zeta-function, Mathematika 3 (1956), 102–108. MR 86083, DOI 10.1112/S0025579300001753
  • D. H. Lehmer, On the roots of the Riemann zeta-function, Acta Math. 95 (1956), 291–298. MR 86082, DOI 10.1007/BF02401102
  • J. E. LITTLEWOOD, "On the zeros of the Riemann zeta-function," Proc. Cambridge Philos. Soc., v. 22, 1924, pp. 295-318.
  • N. A. Meller, Computations connected with the check of Riemann’s hypothesis, Dokl. Akad. Nauk SSSR 123 (1958), 246–248 (Russian). MR 0099960
  • H. L. Montgomery, The pair correlation of zeros of the zeta function, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 181–193. MR 0337821
  • Hugh L. Montgomery, Distribution of the zeros of the Riemann zeta function, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 379–381. MR 0419378
  • Hugh L. Montgomery, Extreme values of the Riemann zeta function, Comment. Math. Helv. 52 (1977), no. 4, 511–518. MR 460255, DOI 10.1007/BF02567383
  • Hugh L. Montgomery, Problems concerning prime numbers, Mathematical developments arising from Hilbert problems (Proc. Sympos. Pure Math., Northern Illinois Univ., De Kalb, Ill., 1974) Proc. Sympos. Pure Math., Vol. XXVIII, Amer. Math. Soc., Providence, R.I., 1976, pp. 307–310. MR 0427249
  • H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529–542. MR 357373, DOI 10.4064/aa-24-5-529-542
  • Bernhard Riemann, Gesammelte mathematische Werke und wissenschaftlicher Nachlass, Dover Publications, Inc., New York, N.Y., 1953 (German). MR 0052364
  • J. Barkley Rosser, J. M. Yohe, and Lowell Schoenfeld, Rigorous computation and the zeros of the Riemann zeta-function. (With discussion), Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 70–76. MR 0258245
  • Atle Selberg, Contributions to the theory of the Riemann zeta-function, Arch. Math. Naturvid. 48 (1946), no. 5, 89–155. MR 20594
  • C. L. SIEGEL, "Über Riemanns Nachlass zur analytischen Zahlentheorie," Quellen Studien zur Geschichte der Math. Astron. und Phys. Abt. B: Studien 2, 1932, pp. 45-48. (Also in Gesammelte Abhandlungen, Vol. 1, Springer-Verlag, New York, 1966.) E. C. TITCHMARSH, "The zeros of the Riemann zeta-function," Proc. Roy. Soc. London, v. 151, 1935, pp. 234-255; also ibid., v. 157, 1936, pp. 261-263.
  • E. C. Titchmarsh, The Theory of the Riemann Zeta-Function, Oxford, at the Clarendon Press, 1951. MR 0046485
  • A. M. Turing, Some calculations of the Riemann zeta-function, Proc. London Math. Soc. (3) 3 (1953), 99–117. MR 55785, DOI 10.1112/plms/s3-3.1.99
  • J. H. Wilkinson, Rounding errors in algebraic processes, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. MR 0161456
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 10H05
  • Retrieve articles in all journals with MSC: 10H05
Additional Information
  • © Copyright 1979 American Mathematical Society
  • Journal: Math. Comp. 33 (1979), 1361-1372
  • MSC: Primary 10H05
  • DOI: https://doi.org/10.1090/S0025-5718-1979-0537983-2
  • MathSciNet review: 537983