High-precision values of the gamma function and of some related coefficients
Authors:
Arne Fransén and Staffan Wrigge
Journal:
Math. Comp. 34 (1980), 553-566
MSC:
Primary 65A05; Secondary 65D20
DOI:
https://doi.org/10.1090/S0025-5718-1980-0559204-5
Corrigendum:
Math. Comp. 37 (1981), 233-235.
MathSciNet review:
559204
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we determine numerical values to 80D of the coefficients in the Taylor series expansion ${\Gamma ^m}(s + x) = \Sigma _0^\infty {g_k}(m,s){x^k}$ for certain values of m and s and use these values to calculate $\Gamma (p/q)\;(p,q = 1,2, \ldots ,10;\;p < q)$ and ${\min _{x > 0}}\Gamma (x)$ to 80D. Finally, we obtain a high-precision value of the integral $\smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$.
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR 0167642
- L. Bourguet, Sur les intégrales eulériennes et quelques autres fonctions uniformes, Acta Math. 2 (1883), no. 1, 261–295 (French). MR 1554599, DOI https://doi.org/10.1007/BF02415217
- Bradley D. Carter and Melvin D. Springer, The distribution of products, quotients and powers of independent $H$-function variates, SIAM J. Appl. Math. 33 (1977), no. 4, 542–558. MR 483133, DOI https://doi.org/10.1137/0133036 A. FRANSÉN, Concerning the Definite Integral $\smallint _0^\infty {(\Gamma (x))^{ - 1}}\;dx$, FOA Rapport, C10100-M4 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1978.
- Arne Fransén, Accurate determination of the inverse gamma integral, BIT 19 (1979), no. 1, 137–138. MR 530126, DOI https://doi.org/10.1007/BF01931232 D. C. GALAND & P. F. BYRD, “High accuracy gamma function values for some rational arguments,” Math. Comp., v. 22, 1968, pp. 885-887. M. L. GLASSER & V. E. WOOD, “A closed form evaluation of the elliptic integral,” Math. Comp., v. 25, 1971, pp. 535-536.
- Koji Katayama, On Ramanujan’s formula for values of Riemann zeta-function at positive odd integers, Acta Arith. 22 (1973), 149–155. MR 321887, DOI https://doi.org/10.4064/aa-22-2-149-155 A. H. MORRIS, JR., “Table of the Riemann Zeta function for integer arguments,” reviewed in Math. Comp., v. 27, 1973, pp. 673-674, RMT 32. A. H. MORRIS, JR., “Tables of coefficients of the Maclaurin expansions of $1/\Gamma (z + 1)$ and $1/\Gamma (z + 2)$,” reviewed in Math. Comp., v. 27, 1973, p. 674, RMT 32 and RMT 33. N. NIELSEN, Die Gammafunktion, Chelsea, New York, 1965. H. P. ROBINSON, Private communications, 1978-1979.
- John W. Wrench Jr., Concerning two series for the gamma function, Math. Comp. 22 (1968), 617–626. MR 237078, DOI https://doi.org/10.1090/S0025-5718-1968-0237078-4 S. WRIGGE, Contributions to the Theory of Elliptic Integrals, FOA P Rapport, C 836-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1973.
- H. S. Wrigge, An elliptic integral identity, Math. Comp. 27 (1973), 839–840. MR 324083, DOI https://doi.org/10.1090/S0025-5718-1973-0324083-4 S. WRIGGE, Contributions to the Theory of Elliptic Integrals (Part 2), FOA Rapport, C10003-M6 (National Defence Research Institute, S-104 50 Stockholm 80, Sweden), 1974.
Retrieve articles in Mathematics of Computation with MSC: 65A05, 65D20
Retrieve articles in all journals with MSC: 65A05, 65D20
Additional Information
Keywords:
Special functions,
Gamma function,
Riemann Zeta function
Article copyright:
© Copyright 1980
American Mathematical Society