## A finite element method for first-order hyperbolic systems

HTML articles powered by AMS MathViewer

- by Mitchell Luskin PDF
- Math. Comp.
**35**(1980), 1093-1112 Request permission

## Abstract:

A new finite element method is proposed for the numerical solution of a class of initial-boundary value problems for first-order hyperbolic systems in one space dimension. An application of our procedure to a system modeling gas flow in a pipe is discussed. Asymptotic error estimates are derived in the ${L^2}$ norm in space.## References

- Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,
*Optimal $L_{\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**371077**, DOI 10.1090/S0025-5718-1975-0371077-0 - Todd Dupont,
*Galerkin methods for modeling gas pipelines*, Constructive and computational methods for differential and integral equations (Sympos., Indiana Univ., Bloomington, Ind., 1974) Lecture Notes in Math., Vol. 430, Springer, Berlin, 1974, pp. 112–130. MR**0502035** - Todd Dupont,
*Galerkin methods for first order hyperbolics: an example*, SIAM J. Numer. Anal.**10**(1973), 890–899. MR**349046**, DOI 10.1137/0710074
T. DUPONT & L. WAHLBIN, "${L^2}$ optimality of weighted ${H^1}$ projections into piecewise polynomial spaces," Manuscript, Dept. of Math., Univ. of Chicago, 1974.
- G. W. Hedstrom,
*The Galerkin method based on Hermite cubics*, SIAM J. Numer. Anal.**16**(1979), no. 3, 385–393. MR**530476**, DOI 10.1137/0716032 - Milton Lees,
*A linear three-level difference scheme for quasilinear parabolic equations*, Math. Comp.**20**(1966), 516–522. MR**207224**, DOI 10.1090/S0025-5718-1966-0207224-5 - Mitchell Luskin,
*On the existence of global smooth solutions for a model equation for fluid flow in a pipe*, J. Math. Anal. Appl.**84**(1981), no. 2, 614–630. MR**639688**, DOI 10.1016/0022-247X(81)90192-X
M. LUSKIN, "A finite element method for first order hyperbolic systems in two space variables," Manuscript, Dept. of Math., Univ. of Michigan, 1978.
G. PLATZMAN, "Normal modes of the world ocean. Part 1. Design of a finite-element barotropic model," - H. H. Rachford Jr.,
*Two-level discrete-time Galerkin approximations for second order nonlinear parabolic partial differential equations*, SIAM J. Numer. Anal.**10**(1973), 1010–1026. MR**339519**, DOI 10.1137/0710084 - Gilbert Strang and George J. Fix,
*An analysis of the finite element method*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR**0443377**
V. STREETER, - Lars B. Wahlbin,
*A dissipative Galerkin method applied to some quasilinear hyperbolic equations*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 109–117 (English, with French summary). MR**368447**

*J. Phys. Oceanogr.*, v. 8, 1979, pp. 323-343.

*Fluid Mechanics*, 5th ed., McGraw-Hill, New York, 1971.

## Additional Information

- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp.
**35**(1980), 1093-1112 - MSC: Primary 65N30; Secondary 65M15, 76N15
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583489-2
- MathSciNet review: 583489