Variational crimes and $L^{\infty }$ error estimates in the finite element method
HTML articles powered by AMS MathViewer
- by Charles I. Goldstein PDF
- Math. Comp. 35 (1980), 1131-1157 Request permission
Abstract:
In order to numerically solve a second-order linear elliptic boundary value problem in a bounded domain, using the finite element method, it is often necessary in practice to violate certain assumptions of the standard variational formulation. Two of these "variational crimes" will be emphasized here and it will be shown that optimal ${L^\infty }$ error estimates still hold. The first "crime" occurs when a nonconforming finite element method is employed, so that smoothness requirements are violated at interelement boundaries. The second "crime" occurs when numerical integration is employed, so that the bilinear form is perturbed. In both cases, the "patch test" is crucial to the proof of ${L^\infty }$ estimates, just as it was in the case of mean-square estimates.References
- C. I. Goldstein and L. R. Scott, Optimal maximum norm error estimates for some finite element methods for treating the Dirichlet problem, Calcolo 20 (1983), no. 1, 1â52. MR 747006, DOI 10.1007/BF02575891
- Ridgway Scott, Optimal $L^{\infty }$ estimates for the finite element method on irregular meshes, Math. Comp. 30 (1976), no. 136, 681â697. MR 436617, DOI 10.1090/S0025-5718-1976-0436617-2
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, JournĂ©es âĂlĂ©ments Finisâ (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
- J. A. Nitsche, $L_{\infty }$-convergence of finite element approximation, JournĂ©es âĂlĂ©ments Finisâ (Rennes, 1975) Univ. Rennes, Rennes, 1975, pp. 18. MR 568857
- Frank Natterer, Ăber die punktweise Konvergenz finiter Elemente, Numer. Math. 25 (1975/76), no. 1, 67â77 (German, with English summary). MR 474884, DOI 10.1007/BF01419529
- Rolf Rannacher, Zur $L^{\infty }$-Konvergenz linearer finiter Elemente beim Dirichlet-Problem, Math. Z. 149 (1976), no. 1, 69â77 (German). MR 488859, DOI 10.1007/BF01301633
- A. H. Schatz and L. B. Wahlbin, Interior maximum norm estimates for finite element methods, Math. Comp. 31 (1977), no. 138, 414â442. MR 431753, DOI 10.1090/S0025-5718-1977-0431753-X
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73â109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73â109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- Joachim A. Nitsche, $L_{\infty }$-error analysis for finite elements, Mathematics of finite elements and applications, III (Proc. Third MAFELAP Conf., Brunel Univ., Uxbridge, 1978) Academic Press, London-New York, 1979, pp. 173â186. MR 559297 P. G. C1ARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.
- Gilbert Strang and George J. Fix, An analysis of the finite element method, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. MR 0443377
- L. B. Wahlbin, Maximum norm error estimates in the finite element method with isoparametric quadratic elements and numerical integration, RAIRO Anal. NumĂ©r. 12 (1978), no. 2, 173â202, v (English, with French summary). MR 502070, DOI 10.1051/m2an/1978120201731
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 0350177 IU. P. KRASOVSKIÄŹ, "Isolation of singularities of the Greenâs function," Math. USSR-Izv., v. 1, 1967, pp. 935-966.
- A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. MR 0347104
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche OpĂ©rationnelle SĂ©r. Rouge 7 (1973), no. R-3, 33â75. MR 343661 R. TEMAM & F. THOMASSET, "Numerical solution of Navier-Stokes equation by a finite element method," Proc. Conf. on Numerical Methods in Fluid Mechanics, Rapallo, Italy, 1976.
- Todd Dupont and Ridgway Scott, Polynomial approximation of functions in Sobolev spaces, Math. Comp. 34 (1980), no. 150, 441â463. MR 559195, DOI 10.1090/S0025-5718-1980-0559195-7
Additional Information
- © Copyright 1980 American Mathematical Society
- Journal: Math. Comp. 35 (1980), 1131-1157
- MSC: Primary 65N30; Secondary 65N15
- DOI: https://doi.org/10.1090/S0025-5718-1980-0583491-0
- MathSciNet review: 583491