Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society, the Mathematics of Computation (MCOM) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.98.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On a method of asymptotic evaluation of multiple integrals
HTML articles powered by AMS MathViewer

by R. Wong and J. P. McClure PDF
Math. Comp. 37 (1981), 509-521 Request permission

Abstract:

In this paper, some of the formal arguments given by Jones and Kline [J. Math. Phys., v. 37, 1958, pp. 1-28] are made rigorous. In particular, the reduction procedure of a multiple oscillatory integral to a one-dimensional Fourier transform is justified, and a Taylor-type theorem with remainder is proved for the Dirac $\delta$-function. The analyticity condition of Jones and Kline is now replaced by infinite differentiability. Connections with the asymptotic expansions of Jeanquartier and Malgrange are also discussed.
References
  • Norman Bleistein and Richard A. Handelsman, Multidimensional stationary phase. An alternative derivation, SIAM J. Math. Anal. 6 (1975), 480–487. MR 361570, DOI 10.1137/0506042
  • N. Bleistein & R. A. Handelsman, Asymptotic Expansions of Integrals, Holt, Rinehart and Winston, New York, 1975.
  • Nicholas Chako, Asymptotic expansions of double and multiple integrals occurring in diffraction theory, J. Inst. Math. Appl. 1 (1965), 372–422. MR 204944
  • R. Courant, Differential and Integral Calculus, vol. 2, Blackie & Son Ltd., London, 1970.
  • J. J. Duistermaat, Oscillatory integrals, Lagrange immersions and unfolding of singularities, Comm. Pure Appl. Math. 27 (1974), 207–281. MR 405513, DOI 10.1002/cpa.3160270205
  • Joachim Focke, Asymptotische Entwicklungen mittels der Methode der stationären Phase, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Nat. Kl. 101 (1954), no. 3, 48 (German). MR 68650
  • I. M. Gel′fand and Z. Ya. Ĺ apiro, Homogeneous functions and their extensions, Amer. Math. Soc. Transl. (2) 8 (1958), 21–85. MR 0094547
  • I. M. Gel’fand and G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press, New York-London, 1964. Translated by Eugene Saletan. MR 0166596
  • Helmut A. Hamm, Remarks on asymptotic integrals, the polynomial of I. N. Bernstein and the Picard-Lefschetz monodromy, Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975) Amer. Math. Soc., Providence, R.I., 1977, pp. 31–35. MR 0590055
  • Pierre Jeanquartier, DĂ©veloppement asymptotique de la distribution de Dirac attachĂ©e Ă  une fonction analytique, C. R. Acad. Sci. Paris SĂ©r. A-B 201 (1970), A1159–A1161 (French). MR 420695
  • D. S. Jones, Generalised functions, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR 0217534
  • Douglas S. Jones and Morris Kline, Asymptotic expansion of multiple integrals and the method of stationary phase, J. Math. and Phys. 37 (1958), 1–28. MR 103379, DOI 10.1002/sapm19583711
  • Bernard Malgrange, IntĂ©grales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. (4) 7 (1974), 405–430 (1975) (French). MR 372243
  • F. W. J. Olver, Error bounds for stationary phase approximations, SIAM J. Math. Anal. 5 (1974), 19–29. MR 333545, DOI 10.1137/0505003
  • I. M. Ryshik & I. S. Gradstein, Table of Integrals, Series, and Products, Academic Press, New York, 1965. R. T. Seeley, Distributions on Surfaces, Report T.W. 78, Mathematical Centre, Amsterdam, 1962.
Similar Articles
  • Retrieve articles in Mathematics of Computation with MSC: 41A60, 41A63
  • Retrieve articles in all journals with MSC: 41A60, 41A63
Additional Information
  • © Copyright 1981 American Mathematical Society
  • Journal: Math. Comp. 37 (1981), 509-521
  • MSC: Primary 41A60; Secondary 41A63
  • DOI: https://doi.org/10.1090/S0025-5718-1981-0628712-1
  • MathSciNet review: 628712