Polynomial type Padé approximants
HTML articles powered by AMS MathViewer
- by Géza Németh and Magda Zimányi PDF
- Math. Comp. 38 (1982), 553-565 Request permission
Abstract:
Some results are established giving conditions on $f(x)$ so that its main diagonal Padé approximation ${R_n}(x)$ is of the form ${P_n}(x)/{P_n}( - x)$, where ${P_n}(x)$ is a polynomial in x of degree n. A number of applications to special functions are presented. Numerical computations are given for the gamma function using the "bignum" arithmetical facilities of formula manipulation languages REDUCE2, FORMAC.References
-
K. Bahr, "Utilizing the FORMAC novelties," SIGSAM Bull. No. 33, 1975, pp. 21-24.
- George A. Baker Jr., Essentials of Padé approximants, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0454459 A. C. Hearn, REDUCE2 User’s Manual, UCP-19, University of Utah, Salt Lake City, Utah, 1973. Y. L. Luke, The Special Functions and Their Approximations, Vol. 2, Academic Press, New York and London, 1969.
- Yudell L. Luke, Mathematical functions and their approximations, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0501762 K. Németh, Padé-Type Approximations (in Hungarian), Unpublished diploma work at Eötvös Loránd University, Budapest, 1980.
- Oskar Perron, Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954 (German). 3te Aufl. MR 0064172 R. Tobey, J. Baker, R. Crews, P. Marks & K. Victor, PL/I-FORMAC interpreter, 1967.
- William F. Trench, An algorithm for the inversion of finite Hankel matrices, J. Soc. Indust. Appl. Math. 13 (1965), 1102–1107. MR 189232, DOI 10.1137/0113078
- John W. Wrench Jr., Concerning two series for the gamma function, Math. Comp. 22 (1968), 617–626. MR 237078, DOI 10.1090/S0025-5718-1968-0237078-4
Additional Information
- © Copyright 1982 American Mathematical Society
- Journal: Math. Comp. 38 (1982), 553-565
- MSC: Primary 41A21; Secondary 33A15, 41A20
- DOI: https://doi.org/10.1090/S0025-5718-1982-0645671-7
- MathSciNet review: 645671