Block Runge-Kutta methods for the numerical integration of initial value problems in ordinary differential equations. I. The nonstiff case
Author:
J. R. Cash
Journal:
Math. Comp. 40 (1983), 175-191
MSC:
Primary 65L05
DOI:
https://doi.org/10.1090/S0025-5718-1983-0679439-3
MathSciNet review:
679439
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Block Runge-Kutta formulae suitable for the approximate numerical integration of initial value problems for first order systems of ordinary differential equations are derived. Considered in detail are the problems of varying both order and stepsize automatically. This leads to a class of variable order block explicit Runge-Kutta formulae for the integration of nonstiff problems and a class of variable order block implicit formulae suitable for stiff problems. The central idea is similar to one due to C. W. Gear in developing Runge-Kutta starters for linear multistep methods. Some numerical results are given to illustrate the algorithms developed for both the stiff and nonstiff cases and comparisons with standard Runge-Kutta methods are made.
-
J. Bond, Some Block Iterative Methods for the Numerical Solution of Systems of Ordinary Differential Equations, Ph. D. thesis, Univ. of London, 1979.
D. G. Brush, J. J. Kohfeld & G. T. Thompson, "Solution of ordinary differential equations using two βoff-stepβ points," J. Assoc. Comput. Mach., v. 14, 1967, pp. 769-784.
- J. C. Butcher, Implicit Runge-Kutta processes, Math. Comp. 18 (1964), 50β64. MR 159424, DOI https://doi.org/10.1090/S0025-5718-1964-0159424-9
- J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185β201. MR 0152129
- J. R. Cash and C. B. Liem, On the design of a variable order, variable step diagonally implicit Runge-Kutta algorithm, J. Inst. Math. Appl. 26 (1980), no. 1, 87β91. MR 594345
- John Donelson III. and Eldon Hansen, Cyclic composite multistep predictor-corrector methods, SIAM J. Numer. Anal. 8 (1971), 137β157. MR 282531, DOI https://doi.org/10.1137/0708018 E. Fehlberg, Classical Fifth, Sixth, Seventh and Eighth Order Runge-Kutta Formulas With Stepsize Control, NASA technical report no. 287, 1968. E. Fehlberg, Low Order Classical Runge-Kutta Formulas With Stepsize Control and Their Application to Some Heat Transfer Problems, NASA technical report no. 315, 1969.
- L. Fox, The numerical solution of two-point boundary problems in ordinary differential equations, Oxford University Press, New York, 1957. MR 0102178
- C. William Gear, Numerical initial value problems in ordinary differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR 0315898
- C. W. Gear, Runge-Kutta starters for multistep methods, ACM Trans. Math. Software 6 (1980), no. 3, 263β279. MR 585338, DOI https://doi.org/10.1145/355900.355901
- William B. Gragg and Hans J. Stetter, Generalized multistep predictor-corrector methods, J. Assoc. Comput. Mach. 11 (1964), 188β209. MR 161476, DOI https://doi.org/10.1145/321217.321223 A. C. Hindmarsh, GEAR: Ordinary Differential Equation System Solver, UCID-30001, Rev. 3, Lawrence Livermore Laboratory, Univ. of California, 1974.
- T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick, Comparing numerical methods for ordinary differential equations, SIAM J. Numer. Anal. 9 (1972), 603β637; errata, ibid. 11 (1974), 681. MR 351086, DOI https://doi.org/10.1137/0709052
- W. H. Enright and T. E. Hull, Test results on initial value methods for non-stiff ordinary differential equations, SIAM J. Numer. Anal. 13 (1976), no. 6, 944β961. MR 428714, DOI https://doi.org/10.1137/0713075
- J. J. Kohfeld and G. T. Thompson, Multistep methods with modified predictors and correctors, J. Assoc. Comput. Mach. 14 (1967), 155β166. MR 242375, DOI https://doi.org/10.1145/321371.321383
- Arieh Iserles, On the $A$-stability of implicit Runge-Kutta processes, BIT 18 (1978), no. 2, 157β169. MR 501927, DOI https://doi.org/10.1007/BF01931692
- W. Riha, Optimal stability polynomials, Computing (Arch. Elektron. Rechnen) 9 (1972), 37β43 (English, with German summary). MR 315901, DOI https://doi.org/10.1007/bf02236374
- J. Barkley Rosser, A Runge-Kutta for all seasons, SIAM Rev. 9 (1967), 417β452. MR 219242, DOI https://doi.org/10.1137/1009069 D. Sarafyan, Composite and Multi-Step Runge-Kutta Formulas, Technical Report No. 18, Louisiana State University, Nov. 1966. D. Sarafyan, Multi-Order Property of Runge-Kutta Formulas and Error Estimation, Technical Report No. 29, Louisiana State University, Nov. 1967.
- L. F. Shampine and H. A. Watts, Global error estimation for ordinary differential equations, ACM Trans. Math. Software 2 (1976), no. 2, 172β186. MR 413507, DOI https://doi.org/10.1145/355681.355687
- L. F. Shampine, M. K. Gordon, and J. A. Wisniewski, Variable order Runge-Kutta codes, Academic Press, London-New York-Toronto, Ont., 1980, pp. 83β101. MR 582973
- L. F. Shampine and M. K. Gordon, Computer solution of ordinary differential equations, W. H. Freeman and Co., San Francisco, Calif., 1975. The initial value problem. MR 0478627
- Hans J. Stetter, Analysis of discretization methods for ordinary differential equations, Springer-Verlag, New York-Heidelberg, 1973. Springer Tracts in Natural Philosophy, Vol. 23. MR 0426438 P. J. van der Houwen, Construction of Integration Formulas for Initial Value Problems, North-Holland, Amsterdam, 1976. H. A. Watts, Runge-Kutta-Fehlberg Methods: Sealed Stability Regions, report number SAND760323, 1976.
- Jack Williams and Frank de Hoog, A class of $A$-stable advanced multistep methods, Math. Comp. 28 (1974), 163β177. MR 356519, DOI https://doi.org/10.1090/S0025-5718-1974-0356519-8
Retrieve articles in Mathematics of Computation with MSC: 65L05
Retrieve articles in all journals with MSC: 65L05
Additional Information
Article copyright:
© Copyright 1983
American Mathematical Society