Divisors of Mersenne numbers
HTML articles powered by AMS MathViewer
- by Samuel S. Wagstaff PDF
- Math. Comp. 40 (1983), 385-397 Request permission
Abstract:
We add to the heuristic and empirical evidence for a conjecture of Gillies about the distribution of the prime divisors of Mersenne numbers. We list some large prime divisors of Mersenne numbers ${M_p}$ in the range $17000 < p < {10^5}$.References
- Paul T. Bateman and Roger A. Horn, A heuristic asymptotic formula concerning the distribution of prime numbers, Math. Comp. 16 (1962), 363–367. MR 148632, DOI 10.1090/S0025-5718-1962-0148632-7
- John Brillhart, On the factors of certain Mersenne numbers. II, Math. Comp. 18 (1964), 87–92. MR 159776, DOI 10.1090/S0025-5718-1964-0159776-X
- Cherwell, Note on the distribution of the intervals between prime numbers, Quart. J. Math. Oxford Ser. 17 (1946), 46–62. MR 17308, DOI 10.1093/qmath/os-17.1.46
- Cherwell and E. M. Wright, The frequency of prime-patterns, Quart. J. Math. Oxford Ser. (2) 11 (1960), 60–63. MR 130231, DOI 10.1093/qmath/11.1.60
- John R. Ehrman, The number of prime divisors of certain Mersenne numbers, Math. Comp. 21 (1967), 700–704. MR 223320, DOI 10.1090/S0025-5718-1967-0223320-1
- Donald B. Gillies, Three new Mersenne primes and a statistical theory, Math. Comp. 18 (1964), 93–97. MR 159774, DOI 10.1090/S0025-5718-1964-0159774-6
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730 H. W. Lenstra, Jr., "Primality testing," Studieweek Getaltheorie en Computers, Sept. 1-5, 1980, Stichting Math. Centrum, Amsterdam.
- Curt Noll and Laura Nickel, The 25th and 26th Mersenne primes, Math. Comp. 35 (1980), no. 152, 1387–1390. MR 583517, DOI 10.1090/S0025-5718-1980-0583517-4
- G. Pólya, Heuristic reasoning in the theory of numbers, Amer. Math. Monthly 66 (1959), 375–384. MR 104639, DOI 10.2307/2308748
- Daniel Shanks and Sidney Kravitz, On the distribution of Mersenne divisors, Math. Comp. 21 (1967), 97–101. MR 220665, DOI 10.1090/S0025-5718-1967-0220665-6
- David Slowinski, Searching for the 27th Mersenne prime, J. Recreational Math. 11 (1978/79), no. 4, 258–267. MR 536930
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 6th ed., Oxford University Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a foreword by Andrew Wiles. MR 2445243
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Math. Comp. 40 (1983), 385-397
- MSC: Primary 10H15; Secondary 10-04, 10A25
- DOI: https://doi.org/10.1090/S0025-5718-1983-0679454-X
- MathSciNet review: 679454