Twenty-fourth power residue difference sets
HTML articles powered by AMS MathViewer
- by Ronald J. Evans PDF
- Math. Comp. 40 (1983), 677-683 Request permission
Abstract:
It is proved that if p is a ${\text {prime}} \equiv 1\;\pmod 24$ such that either 2 is a cubic residue or 3 is a quartic residue $\pmod p$, then the twenty-fourth powers $\pmod p$ do not form a difference set or a modified difference set.References
- Leonard D. Baumert, Cyclic difference sets, Lecture Notes in Mathematics, Vol. 182, Springer-Verlag, Berlin-New York, 1971. MR 0282863
- L. D. Baumert and H. Fredricksen, The cyclotomic numbers of order eighteen with applications to difference sets, Math. Comp. 21 (1967), 204–219. MR 223322, DOI 10.1090/S0025-5718-1967-0223322-5
- Bruce C. Berndt and Ronald J. Evans, Sums of Gauss, Jacobi, and Jacobsthal, J. Number Theory 11 (1979), no. 3, S. Chowla Anniversary Issue, 349–398. MR 544263, DOI 10.1016/0022-314X(79)90008-8
- S. Chowla, A property of biquadratic residues, Proc. Nat. Acad. Sci. India Sect. A 14 (1944), 45–46. MR 14119
- Ronald J. Evans, Bioctic Gauss sums and sixteenth power residue difference sets, Acta Arith. 38 (1980/81), no. 1, 37–46. MR 574123, DOI 10.4064/aa-38-1-37-46 R. J. Evans, "Table of cyclotomic numbers of order twenty-four," Math. Comp., v. 35, 1980, pp. 1036-1038; UMT file 12[9.10], 98 pp.
- Emma Lehmer, On residue difference sets, Canad. J. Math. 5 (1953), 425–432. MR 56007, DOI 10.4153/cjm-1953-047-3
- Henry B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience Publishers John Wiley & Sons, New York-London-Sydney, 1965. MR 0181626
- J. B. Muskat, The cyclotomic numbers of order fourteen, Acta Arith. 11 (1965/66), 263–279. MR 193081, DOI 10.4064/aa-11-3-263-279
- Joseph B. Muskat and Albert L. Whiteman, The cyclotomic numbers of order twenty, Acta Arith. 17 (1970), 185–216. MR 268151, DOI 10.4064/aa-17-2-185-216
- Thomas Storer, Cyclotomy and difference sets, Lectures in Advanced Mathematics, No. 2, Markham Publishing Co., Chicago, Ill., 1967. MR 0217033
- Albert Leon Whiteman, The cyclotomic numbers of order sixteen, Trans. Amer. Math. Soc. 86 (1957), 401–413. MR 92807, DOI 10.1090/S0002-9947-1957-0092807-7
- Albert Leon Whiteman, The cyclotomic numbers of order ten, Proc. Sympos. Appl. Math., Vol. 10, American Mathematical Society, Providence, R.I., 1960, pp. 95–111. MR 0113851
- A. L. Whiteman, The cyclotomic numbers of order twelve, Acta Arith. 6 (1960), 53–76. MR 118709, DOI 10.4064/aa-6-1-53-76
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Math. Comp. 40 (1983), 677-683
- MSC: Primary 12C20; Secondary 05B10, 10G05, 10L05
- DOI: https://doi.org/10.1090/S0025-5718-1983-0689481-4
- MathSciNet review: 689481