Factors of Fermat numbers and large primes of the form $k\cdot 2^{n}+1$
HTML articles powered by AMS MathViewer
- by Wilfrid Keller PDF
- Math. Comp. 41 (1983), 661-673 Request permission
Abstract:
A new factor is given for each of the Fermat numbers ${F_{52}},{F_{931}},{F_{6835}}$, and ${F_{9448}}$. In addition, a factor of ${F_{75}}$ discovered by Gary Gostin is presented. The current status for all ${F_m}$ is shown in a table. Primes of the form $k \cdot {2^n} + 1,k$ odd, are listed for $31 \leqslant k \leqslant 149$, $1500 < n \leqslant 4000$, and for $151 \leqslant k \leqslant 199$, $1000 < n \leqslant 4000$. Some primes for even larger values of n are included, the largest one being $5 \cdot {2^{13165}} + 1$. Also, a survey of several related questions is given. In particular, values of k such that $k\cdot {2^n} + 1$ is composite for every n are considered, as well as odd values of h such that $3h\cdot {2^n} \pm 1$ never yields a twin prime pair.References
-
A. O. L. Atkin & N. W. Rickert, "On a larger pair of twin primes," Notices Amer. Math. Soc., v. 26, 1979, p. A-373.
A. O. L. Atkin & N. W. Rickert, "Some factors of Fermat numbers," Abstracts Amer. Math. Soc., v. 1, 1980, p. 211.
- Robert Baillie, New primes of the form $k\cdot 2^{n}+1$, Math. Comp. 33 (1979), no. 148, 1333–1336. MR 537979, DOI 10.1090/S0025-5718-1979-0537979-0
- Robert Baillie, G. Cormack, and H. C. Williams, The problem of Sierpiński concerning $k\cdot 2^{n}+1$, Math. Comp. 37 (1981), no. 155, 229–231. MR 616376, DOI 10.1090/S0025-5718-1981-0616376-2
- Richard P. Brent, Succinct proofs of primality for the factors of some Fermat numbers, Math. Comp. 38 (1982), no. 157, 253–255. MR 637304, DOI 10.1090/S0025-5718-1982-0637304-0
- Richard P. Brent and John M. Pollard, Factorization of the eighth Fermat number, Math. Comp. 36 (1981), no. 154, 627–630. MR 606520, DOI 10.1090/S0025-5718-1981-0606520-5 Ingo Büchel & Wilfrid Keller, Ein Programmsystem für Rationale Arithmetik: Einführung und Beispielsammlung, Bericht Nr. 8004, Rechenzentrum der Universität Hamburg, April 1980.
- G. V. Cormack and H. C. Williams, Some very large primes of the form $k\cdot 2^{m}+1$, Math. Comp. 35 (1980), no. 152, 1419–1421. MR 583519, DOI 10.1090/S0025-5718-1980-0583519-8 Martin Gardner, "Mathematical games: Gauss’s congruence theory was mod as early as 1801," Scientific American, v. 244, #2, February 1981, pp. 14-19.
- Gary B. Gostin and Philip B. McLaughlin Jr., Six new factors of Fermat numbers, Math. Comp. 38 (1982), no. 158, 645–649. MR 645680, DOI 10.1090/S0025-5718-1982-0645680-8
- Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, Springer-Verlag, New York-Berlin, 1981. MR 656313
- John C. Hallyburton Jr. and John Brillhart, Two new factors of Fermat numbers, Math. Comp. 29 (1975), 109–112. MR 369225, DOI 10.1090/S0025-5718-1975-0369225-1
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
- G. Jaeschke, On the smallest $k$ such that all $k\cdot 2^{n}+1$ are composite, Math. Comp. 40 (1983), no. 161, 381–384. MR 679453, DOI 10.1090/S0025-5718-1983-0679453-8
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
- D. H. Lehmer, On Fermat’s quotient, base two, Math. Comp. 36 (1981), no. 153, 289–290. MR 595064, DOI 10.1090/S0025-5718-1981-0595064-5
- G. Matthew and H. C. Williams, Some new primes of the form $k\cdot 2^{n}+1$, Math. Comp. 31 (1977), no. 139, 797–798. MR 439719, DOI 10.1090/S0025-5718-1977-0439719-0
- Michael A. Morrison and John Brillhart, A method of factoring and the factorization of $F_{7}$, Math. Comp. 29 (1975), 183–205. MR 371800, DOI 10.1090/S0025-5718-1975-0371800-5
- P. Ribenboim, On the square factors of the numbers of Fermat and Ferentinou-Nicolacopoulou, Bull. Soc. Math. Grèce (N.S.) 20 (1979), 81–92. MR 642432
- Raphael M. Robinson, A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958), 673–681. MR 96614, DOI 10.1090/S0002-9939-1958-0096614-7
- W. Sierpiński, Sur un problème concernant les nombres $k\cdot 2^{n}+1$, Elem. Math. 15 (1960), 73–74 (French). MR 117201
- R. G. Stanton, Further results on covering integers of the form $1+k2^{n}$ by primes, Combinatorial mathematics, VIII (Geelong, 1980) Lecture Notes in Math., vol. 884, Springer, Berlin-New York, 1981, pp. 107–114. MR 641240
- Hiromi Suyama, Searching for prime factors of Fermat numbers with a microcomputer, BIT (Tokyo) 13 (1981), no. 3, 240–245 (Japanese). MR 610300
- H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978), 127–185. MR 504864
Additional Information
- © Copyright 1983 American Mathematical Society
- Journal: Math. Comp. 41 (1983), 661-673
- MSC: Primary 11Y05; Secondary 11A41, 11Y11
- DOI: https://doi.org/10.1090/S0025-5718-1983-0717710-7
- MathSciNet review: 717710