Factors of Fermat numbers and large primes of the form $k\cdot 2^{n}+1$
HTML articles powered by AMS MathViewer
 by Wilfrid Keller PDF
 Math. Comp. 41 (1983), 661673 Request permission
Abstract:
A new factor is given for each of the Fermat numbers ${F_{52}},{F_{931}},{F_{6835}}$, and ${F_{9448}}$. In addition, a factor of ${F_{75}}$ discovered by Gary Gostin is presented. The current status for all ${F_m}$ is shown in a table. Primes of the form $k \cdot {2^n} + 1,k$ odd, are listed for $31 \leqslant k \leqslant 149$, $1500 < n \leqslant 4000$, and for $151 \leqslant k \leqslant 199$, $1000 < n \leqslant 4000$. Some primes for even larger values of n are included, the largest one being $5 \cdot {2^{13165}} + 1$. Also, a survey of several related questions is given. In particular, values of k such that $k\cdot {2^n} + 1$ is composite for every n are considered, as well as odd values of h such that $3h\cdot {2^n} \pm 1$ never yields a twin prime pair.References

A. O. L. Atkin & N. W. Rickert, "On a larger pair of twin primes," Notices Amer. Math. Soc., v. 26, 1979, p. A373.
A. O. L. Atkin & N. W. Rickert, "Some factors of Fermat numbers," Abstracts Amer. Math. Soc., v. 1, 1980, p. 211.
 Robert Baillie, New primes of the form $k\cdot 2^{n}+1$, Math. Comp. 33 (1979), no. 148, 1333–1336. MR 537979, DOI 10.1090/S00255718197905379790
 Robert Baillie, G. Cormack, and H. C. Williams, The problem of Sierpiński concerning $k\cdot 2^{n}+1$, Math. Comp. 37 (1981), no. 155, 229–231. MR 616376, DOI 10.1090/S00255718198106163762
 Richard P. Brent, Succinct proofs of primality for the factors of some Fermat numbers, Math. Comp. 38 (1982), no. 157, 253–255. MR 637304, DOI 10.1090/S00255718198206373040
 Richard P. Brent and John M. Pollard, Factorization of the eighth Fermat number, Math. Comp. 36 (1981), no. 154, 627–630. MR 606520, DOI 10.1090/S00255718198106065205 Ingo Büchel & Wilfrid Keller, Ein Programmsystem für Rationale Arithmetik: Einführung und Beispielsammlung, Bericht Nr. 8004, Rechenzentrum der Universität Hamburg, April 1980.
 G. V. Cormack and H. C. Williams, Some very large primes of the form $k\cdot 2^{m}+1$, Math. Comp. 35 (1980), no. 152, 1419–1421. MR 583519, DOI 10.1090/S00255718198005835198 Martin Gardner, "Mathematical games: Gauss’s congruence theory was mod as early as 1801," Scientific American, v. 244, #2, February 1981, pp. 1419.
 Gary B. Gostin and Philip B. McLaughlin Jr., Six new factors of Fermat numbers, Math. Comp. 38 (1982), no. 158, 645–649. MR 645680, DOI 10.1090/S00255718198206456808
 Richard K. Guy, Unsolved problems in number theory, Problem Books in Mathematics, SpringerVerlag, New YorkBerlin, 1981. MR 656313
 John C. Hallyburton Jr. and John Brillhart, Two new factors of Fermat numbers, Math. Comp. 29 (1975), 109–112. MR 369225, DOI 10.1090/S00255718197503692251
 G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 5th ed., The Clarendon Press, Oxford University Press, New York, 1979. MR 568909
 G. Jaeschke, On the smallest $k$ such that all $k\cdot 2^{n}+1$ are composite, Math. Comp. 40 (1983), no. 161, 381–384. MR 679453, DOI 10.1090/S00255718198306794538
 Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., AddisonWesley Series in Computer Science and Information Processing, AddisonWesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
 D. H. Lehmer, On Fermat’s quotient, base two, Math. Comp. 36 (1981), no. 153, 289–290. MR 595064, DOI 10.1090/S00255718198105950645
 G. Matthew and H. C. Williams, Some new primes of the form $k\cdot 2^{n}+1$, Math. Comp. 31 (1977), no. 139, 797–798. MR 439719, DOI 10.1090/S00255718197704397190
 Michael A. Morrison and John Brillhart, A method of factoring and the factorization of $F_{7}$, Math. Comp. 29 (1975), 183–205. MR 371800, DOI 10.1090/S00255718197503718005
 P. Ribenboim, On the square factors of the numbers of Fermat and FerentinouNicolacopoulou, Bull. Soc. Math. Grèce (N.S.) 20 (1979), 81–92. MR 642432
 Raphael M. Robinson, A report on primes of the form $k\cdot 2^{n}+1$ and on factors of Fermat numbers, Proc. Amer. Math. Soc. 9 (1958), 673–681. MR 96614, DOI 10.1090/S00029939195800966147
 W. Sierpiński, Sur un problème concernant les nombres $k\cdot 2^{n}+1$, Elem. Math. 15 (1960), 73–74 (French). MR 117201
 R. G. Stanton, Further results on covering integers of the form $1+k2^{n}$ by primes, Combinatorial mathematics, VIII (Geelong, 1980) Lecture Notes in Math., vol. 884, Springer, BerlinNew York, 1981, pp. 107–114. MR 641240
 Hiromi Suyama, Searching for prime factors of Fermat numbers with a microcomputer, BIT (Tokyo) 13 (1981), no. 3, 240–245 (Japanese). MR 610300
 H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978), 127–185. MR 504864
Additional Information
 © Copyright 1983 American Mathematical Society
 Journal: Math. Comp. 41 (1983), 661673
 MSC: Primary 11Y05; Secondary 11A41, 11Y11
 DOI: https://doi.org/10.1090/S00255718198307177107
 MathSciNet review: 717710