On the equation
Authors:
A. Bremner and J. W. S. Cassels
Journal:
Math. Comp. 42 (1984), 257-264
MSC:
Primary 11D25; Secondary 11G05, 14G05
DOI:
https://doi.org/10.1090/S0025-5718-1984-0726003-4
MathSciNet review:
726003
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Generators are found for the group of rational points on the title curve for all primes less than 1,000. The rank is always 1 in accordance with conjectures of Selmer and Mordell. Some of the generators are rather large.
- [1] B. J. Birch and H. P. F. Swinnerton-Dyer, Notes on elliptic curves. II, J. Reine Angew. Math. 218 (1965), 79–108. MR 179168, https://doi.org/10.1515/crll.1965.218.79
- [2] J. W. S. Cassels, Diophantine equations with special reference to elliptic curves, J. London Math. Soc. 41 (1966), 193–291. MR 199150, https://doi.org/10.1112/jlms/s1-41.1.193
- [3] L. J. Mordell, The diophantine equation 𝑥⁴+𝑚𝑦⁴=𝑧²., Quart. J. Math. Oxford Ser. (2) 18 (1967), 1–6. MR 210659, https://doi.org/10.1093/qmath/18.1.1
- [4] L. J. Mordell, The diophantine equation 𝑦²=𝐷𝑥⁴+1, Number Theory (Colloq., János Bolyai Math. Soc., Debrecen, 1968), North-Holland, Amsterdam, 1970, pp. 141–145. MR 0272711
- [5] Ernst S. Selmer, A conjecture concerning rational points on cubic curves, Math. Scand. 2 (1954), 49–54. MR 62767, https://doi.org/10.7146/math.scand.a-10394
Retrieve articles in Mathematics of Computation with MSC: 11D25, 11G05, 14G05
Retrieve articles in all journals with MSC: 11D25, 11G05, 14G05
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1984-0726003-4
Article copyright:
© Copyright 1984
American Mathematical Society