A priori estimates and analysis of a numerical method for a turning point problem
HTML articles powered by AMS MathViewer
- by Alan E. Berger, Hou De Han and R. Bruce Kellogg PDF
- Math. Comp. 42 (1984), 465-492 Request permission
Abstract:
Bounds are obtained for the derivatives of the solution of a turning point problem. These results suggest a modification of the El-Mistikawy Werle finite difference scheme at the turning point. A uniform error estimate is obtained for the resulting method, and illustrative numerical results are given.References
- Leif R. Abrahamsson, A priori estimates for solutions of singular perturbations with a turning point, Studies in Appl. Math. 56 (1976/77), no. 1, 51–69. MR 463598, DOI 10.1002/sapm197756151 L. R. Abrahamsson, Difference Approximations for Singular Perturbations With a Turning Point, Dept. of Comput. Sci., Uppsala Univ., Rep. 58, 1975.
- Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR 0167642
- Alan E. Berger, Jay M. Solomon, and Melvyn Ciment, An analysis of a uniformly accurate difference method for a singular perturbation problem, Math. Comp. 37 (1981), no. 155, 79–94. MR 616361, DOI 10.1090/S0025-5718-1981-0616361-0
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338 T. M. El - Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing—The exponential box scheme," AIAA J., v. 16, 1978, pp. 749-751.
- K. V. Emel′janov, A difference scheme for the equation $\varepsilon u''+xa(x)u’-b(x)u=f(x)$, Trudy Inst. Mat. i Meh. Ural. Naučn. Centr Akad. Nauk SSSR Vyp. 21 Raznost. Metody Rešenija Kraev. Zadač s Malym Parametrom i Razryv. Kraev. Uslovijami (1976), 5–18, 60. (errata insert) (Russian). MR 0478640
- Paul A. Farrell, A uniformly convergent difference scheme for turning point problems, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 270–274. MR 589374 P. A. Farrell, Uniformly Convergent Difference Schemes for Singularly Perturbed Turning and Non-Turning Point Problems, Doctoral Thesis, Trinity College, Dublin, Ireland, 1982.
- A. F. Hegarty, J. J. H. Miller, and E. O’Riordan, Uniform second order difference schemes for singular perturbation problems, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR 589380
- R. Bruce Kellogg, Difference approximation for a singular perturbation problem with turning points, Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980) North-Holland Math. Stud., vol. 47, North-Holland, Amsterdam-New York, 1981, pp. 133–139. MR 605504
- R. Bruce Kellogg and Alice Tsan, Analysis of some difference approximations for a singular perturbation problem without turning points, Math. Comp. 32 (1978), no. 144, 1025–1039. MR 483484, DOI 10.1090/S0025-5718-1978-0483484-9
- Barbro Kreiss and Heinz-Otto Kreiss, Numerical methods for singular perturbation problems, SIAM J. Numer. Anal. 18 (1981), no. 2, 262–276. MR 612142, DOI 10.1137/0718019
- W. L. Miranker and J. P. Morreeuw, Semianalytic numerical studies of turning points arising in stiff boundary value problems, Math. Comput. 28 (1974), 1017–1034. MR 0381329, DOI 10.1090/S0025-5718-1974-0381329-5
- Carl E. Pearson, On a differential equation of boundary layer type, J. Math. and Phys. 47 (1968), 134–154. MR 228189
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861
- Steven A. Pruess, Solving linear boundary value problems by approximating the coefficients, Math. Comp. 27 (1973), 551–561. MR 371100, DOI 10.1090/S0025-5718-1973-0371100-1
- Milton E. Rose, Weak-element approximations to elliptic differential equations, Numer. Math. 24 (1975), no. 3, 185–204. MR 411206, DOI 10.1007/BF01436591
- Ivar Stakgold, Green’s functions and boundary value problems, A Wiley-Interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR 537127 E. T. Whittaker & G. N. Watson, A Course of Modern Analysis, MacMillan, New York, 1947.
- Paul A. Farrell, Sufficient conditions for the uniform convergence of difference schemes for singularly perturbed turning and nonturning point problems, Computational and asymptotic methods for boundary and interior layers (Dublin, 1982) Boole Press Conf. Ser., vol. 4, Boole, Dún Laoghaire, 1982, pp. 230–235. MR 737580
- R. E. O’Malley Jr., On boundary value problems for a singularly perturbed differential equation with a turning point, SIAM J. Math. Anal. 1 (1970), 479–490. MR 273148, DOI 10.1137/0501041
Additional Information
- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp. 42 (1984), 465-492
- MSC: Primary 65L10; Secondary 34E20
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736447-2
- MathSciNet review: 736447