## A priori estimates and analysis of a numerical method for a turning point problem

HTML articles powered by AMS MathViewer

- by Alan E. Berger, Hou De Han and R. Bruce Kellogg PDF
- Math. Comp.
**42**(1984), 465-492 Request permission

## Abstract:

Bounds are obtained for the derivatives of the solution of a turning point problem. These results suggest a modification of the El-Mistikawy Werle finite difference scheme at the turning point. A uniform error estimate is obtained for the resulting method, and illustrative numerical results are given.## References

- Leif R. Abrahamsson,
*A priori estimates for solutions of singular perturbations with a turning point*, Studies in Appl. Math.**56**(1976/77), no. 1, 51–69. MR**463598**, DOI 10.1002/sapm197756151
L. R. Abrahamsson, - Milton Abramowitz and Irene A. Stegun,
*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, D.C., 1964. For sale by the Superintendent of Documents. MR**0167642** - Alan E. Berger, Jay M. Solomon, and Melvyn Ciment,
*An analysis of a uniformly accurate difference method for a singular perturbation problem*, Math. Comp.**37**(1981), no. 155, 79–94. MR**616361**, DOI 10.1090/S0025-5718-1981-0616361-0 - Earl A. Coddington and Norman Levinson,
*Theory of ordinary differential equations*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR**0069338**
T. M. El - Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing—The exponential box scheme," - K. V. Emel′janov,
*A difference scheme for the equation $\varepsilon u''+xa(x)u’-b(x)u=f(x)$*, Trudy Inst. Mat. i Meh. Ural. Naučn. Centr Akad. Nauk SSSR**Vyp. 21 Raznost. Metody Rešenija Kraev. Zadač s Malym Parametrom i Razryv. Kraev. Uslovijami**(1976), 5–18, 60. (errata insert) (Russian). MR**0478640** - Paul A. Farrell,
*A uniformly convergent difference scheme for turning point problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 270–274. MR**589374**
P. A. Farrell, - A. F. Hegarty, J. J. H. Miller, and E. O’Riordan,
*Uniform second order difference schemes for singular perturbation problems*, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR**589380** - R. Bruce Kellogg,
*Difference approximation for a singular perturbation problem with turning points*, Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980) North-Holland Math. Stud., vol. 47, North-Holland, Amsterdam-New York, 1981, pp. 133–139. MR**605504** - R. Bruce Kellogg and Alice Tsan,
*Analysis of some difference approximations for a singular perturbation problem without turning points*, Math. Comp.**32**(1978), no. 144, 1025–1039. MR**483484**, DOI 10.1090/S0025-5718-1978-0483484-9 - Barbro Kreiss and Heinz-Otto Kreiss,
*Numerical methods for singular perturbation problems*, SIAM J. Numer. Anal.**18**(1981), no. 2, 262–276. MR**612142**, DOI 10.1137/0718019 - W. L. Miranker and J. P. Morreeuw,
*Semianalytic numerical studies of turning points arising in stiff boundary value problems*, Math. Comput.**28**(1974), 1017–1034. MR**0381329**, DOI 10.1090/S0025-5718-1974-0381329-5 - Carl E. Pearson,
*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**228189** - Murray H. Protter and Hans F. Weinberger,
*Maximum principles in differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR**0219861** - Steven A. Pruess,
*Solving linear boundary value problems by approximating the coefficients*, Math. Comp.**27**(1973), 551–561. MR**371100**, DOI 10.1090/S0025-5718-1973-0371100-1 - Milton E. Rose,
*Weak-element approximations to elliptic differential equations*, Numer. Math.**24**(1975), no. 3, 185–204. MR**411206**, DOI 10.1007/BF01436591 - Ivar Stakgold,
*Green’s functions and boundary value problems*, A Wiley-Interscience Publication, John Wiley & Sons, New York-Chichester-Brisbane, 1979. MR**537127**
E. T. Whittaker & G. N. Watson, - Paul A. Farrell,
*Sufficient conditions for the uniform convergence of difference schemes for singularly perturbed turning and nonturning point problems*, Computational and asymptotic methods for boundary and interior layers (Dublin, 1982) Boole Press Conf. Ser., vol. 4, Boole, Dún Laoghaire, 1982, pp. 230–235. MR**737580** - R. E. O’Malley Jr.,
*On boundary value problems for a singularly perturbed differential equation with a turning point*, SIAM J. Math. Anal.**1**(1970), 479–490. MR**273148**, DOI 10.1137/0501041

*Difference Approximations for Singular Perturbations With a Turning Point*, Dept. of Comput. Sci., Uppsala Univ., Rep. 58, 1975.

*AIAA J.*, v. 16, 1978, pp. 749-751.

*Uniformly Convergent Difference Schemes for Singularly Perturbed Turning and Non-Turning Point Problems*, Doctoral Thesis, Trinity College, Dublin, Ireland, 1982.

*A Course of Modern Analysis*, MacMillan, New York, 1947.

## Additional Information

- © Copyright 1984 American Mathematical Society
- Journal: Math. Comp.
**42**(1984), 465-492 - MSC: Primary 65L10; Secondary 34E20
- DOI: https://doi.org/10.1090/S0025-5718-1984-0736447-2
- MathSciNet review: 736447