A globally convergent method for simultaneously finding polynomial roots
Authors:
L. Pasquini and D. Trigiante
Journal:
Math. Comp. 44 (1985), 135-149
MSC:
Primary 65H05
DOI:
https://doi.org/10.1090/S0025-5718-1985-0771036-6
MathSciNet review:
771036
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: A new method for the simultaneous approximation of all the roots of a polynomial is given. The method converges for almost every initial approximation, the set of the exceptional starting points being a closed set of measure zero, at least if all the polynomial roots are real and simple. The method exhibits quadratic convergence not only to simple, but also to multiple roots.
-
M. W. Green, A. J. Korsak & M. C. Pease, "Simultaneous iteration towards all roots of a complex polynomial," SIAM Rev., v. 18, 1976, pp. 501-502.
- Immo O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966), 290–294 (German). MR 203931, DOI https://doi.org/10.1007/BF02162564 I. O. Kerner, "Algorithm 283," Comm. ACM, v. 9, 1966, p. 273. E. Durand, Solution Numérique des Equations Algébriques, Tome I, Masson, Paris, 1968. L. W. Ehrlich, "A modified Newton method for polynomials," Comm. ACM, v. 10, 1967, pp. 107-109.
- Oliver Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (1973), 339–344. MR 329236, DOI https://doi.org/10.1090/S0025-5718-1973-0329236-7 L. Pasquini & D. Trigiante, "Il metodo di continuazione e l’approssimazione simultanea degli zeri di un polinomio," Seminario dell’Ist. di Mat. Appl., Fac.di Ing., Univ. di Roma, 1981, pp. 128-146. M. L. Locascio, L. Pasquini & D. Trigiante, "Un polialgoritmo a convergenza rapida per la determinazione simultanea degli zeri reali di un polinomio e delle loro molteplicità," Monografie di Soft. Matem., N. 30, Pubbl. dell’IAC, 1984.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062
- L. B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9 (1966), 23–37. MR 210316, DOI https://doi.org/10.1007/BF02165226
- Béla Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischen Gleichungen. II, Publ. Math. Debrecen 4 (1956), 384–397 (German). MR 78956
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI https://doi.org/10.1090/S0273-0979-1981-14858-8
Retrieve articles in Mathematics of Computation with MSC: 65H05
Retrieve articles in all journals with MSC: 65H05
Additional Information
Article copyright:
© Copyright 1985
American Mathematical Society