A globally convergent method for simultaneously finding polynomial roots
HTML articles powered by AMS MathViewer
- by L. Pasquini and D. Trigiante PDF
- Math. Comp. 44 (1985), 135-149 Request permission
Abstract:
A new method for the simultaneous approximation of all the roots of a polynomial is given. The method converges for almost every initial approximation, the set of the exceptional starting points being a closed set of measure zero, at least if all the polynomial roots are real and simple. The method exhibits quadratic convergence not only to simple, but also to multiple roots.References
-
M. W. Green, A. J. Korsak & M. C. Pease, "Simultaneous iteration towards all roots of a complex polynomial," SIAM Rev., v. 18, 1976, pp. 501-502.
- Immo O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8 (1966), 290–294 (German). MR 203931, DOI 10.1007/BF02162564 I. O. Kerner, "Algorithm 283," Comm. ACM, v. 9, 1966, p. 273. E. Durand, Solution Numérique des Equations Algébriques, Tome I, Masson, Paris, 1968. L. W. Ehrlich, "A modified Newton method for polynomials," Comm. ACM, v. 10, 1967, pp. 107-109.
- Oliver Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comp. 27 (1973), 339–344. MR 329236, DOI 10.1090/S0025-5718-1973-0329236-7 L. Pasquini & D. Trigiante, "Il metodo di continuazione e l’approssimazione simultanea degli zeri di un polinomio," Seminario dell’Ist. di Mat. Appl., Fac.di Ing., Univ. di Roma, 1981, pp. 128-146. M. L. Locascio, L. Pasquini & D. Trigiante, "Un polialgoritmo a convergenza rapida per la determinazione simultanea degli zeri reali di un polinomio e delle loro molteplicità," Monografie di Soft. Matem., N. 30, Pubbl. dell’IAC, 1984.
- Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. MR 507062
- L. B. Rall, Convergence of the Newton process to multiple solutions, Numer. Math. 9 (1966), 23–37. MR 210316, DOI 10.1007/BF02165226
- Béla Barna, Über die Divergenzpunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischen Gleichungen. II, Publ. Math. Debrecen 4 (1956), 384–397 (German). MR 78956
- Steve Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.) 4 (1981), no. 1, 1–36. MR 590817, DOI 10.1090/S0273-0979-1981-14858-8
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp. 44 (1985), 135-149
- MSC: Primary 65H05
- DOI: https://doi.org/10.1090/S0025-5718-1985-0771036-6
- MathSciNet review: 771036