Elliptic curves over finite fields and the computation of square roots mod $p$
HTML articles powered by AMS MathViewer
- by René Schoof PDF
- Math. Comp. 44 (1985), 483-494 Request permission
Abstract:
In this paper we present a deterministic algorithm to compute the number of ${{\mathbf {F}}_q}$-points of an elliptic curve that is defined over a finite field ${{\mathbf {F}}_q}$ and which is given by a Weierstrass equation. The algorithm takes $O({\log ^9}q)$ elementary operations. As an application we give an algorithm to compute square roots $\bmod p$. For fixed $x \in {\mathbf {Z}}$, it takes $O({\log ^9}p)$ elementary operations to compute $\sqrt x \bmod p$.References
- I. Borosh, C. Moreno, and H. Porta, Elliptic curves over finite fields. I, Proceedings of the 1972 Number Theory Conference (Univ. Colorado, Boulder, Colo.), Univ. Colorado, Boulder, Colo., 1972, pp. 147–155. MR 0404263
- I. Borosh, C. J. Moreno, and H. Porta, Elliptic curves over finite fields. II, Math. Comput. 29 (1975), 951–964. MR 0404264, DOI 10.1090/S0025-5718-1975-0404264-3
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- Donald E. Knuth, The art of computer programming. Vol. 2, 2nd ed., Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass., 1981. Seminumerical algorithms. MR 633878
- Serge Lang, Elliptic curves: Diophantine analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 231, Springer-Verlag, Berlin-New York, 1978. MR 518817, DOI 10.1007/978-3-662-07010-9
- Serge Lang and Hale Trotter, Frobenius distributions in $\textrm {GL}_{2}$-extensions, Lecture Notes in Mathematics, Vol. 504, Springer-Verlag, Berlin-New York, 1976. Distribution of Frobenius automorphisms in $\textrm {GL}_{2}$-extensions of the rational numbers. MR 0568299, DOI 10.1007/BFb0082087
- Hans Petersson, Über die Entwicklungskoeffizienten der automorphen Formen, Acta Math. 58 (1932), no. 1, 169–215 (German). MR 1555346, DOI 10.1007/BF02547776
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- Jean-Pierre Serre and John Tate, Good reduction of abelian varieties, Ann. of Math. (2) 88 (1968), 492–517. MR 236190, DOI 10.2307/1970722
- Daniel Shanks, Class number, a theory of factorization, and genera, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969) Amer. Math. Soc., Providence, R.I., 1971, pp. 415–440. MR 0316385
- Daniel Shanks, Five number-theoretic algorithms, Proceedings of the Second Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1972) Congressus Numerantium, No. VII, Utilitas Math., Winnipeg, Man., 1973, pp. 51–70. MR 0371855
- John T. Tate, The arithmetic of elliptic curves, Invent. Math. 23 (1974), 179–206. MR 419359, DOI 10.1007/BF01389745
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp. 44 (1985), 483-494
- MSC: Primary 11Y16; Secondary 11G20, 14G15
- DOI: https://doi.org/10.1090/S0025-5718-1985-0777280-6
- MathSciNet review: 777280