Computing $\pi (x)$: the Meissel-Lehmer method
HTML articles powered by AMS MathViewer
- by J. C. Lagarias, V. S. Miller and A. M. Odlyzko PDF
- Math. Comp. 44 (1985), 537-560 Request permission
Abstract:
E. D. F. Meissel, a German astronomer, found in the 1870’s a method for computing individual values of $\pi (x)$, the counting function for the number of primes $\leqslant x$. His method was based on recurrences for partial sieving functions, and he used it to compute $\pi ({10^9})$. D. H. Lehmer simplified and extended Meissel’s method. We present further refinements of the Meissel-Lehmer method which incorporate some new sieving techniques. We give an asymptotic running time analysis of the resulting algorithm, showing that for every $\varepsilon > 0$ it computes $\pi (x)$ using at most $O({x^{2/3 + \varepsilon }})$ arithmetic operations and using at most $O({x^{1/3 + \varepsilon }})$ storage locations on a Random Access Machine (RAM) using words of length $[{\log _2}x] + 1$ bits. The algorithm can be further speeded up using parallel processors. We show that there is an algorithm which, when given M RAM parallel processors, computes $\pi (x)$ in time at most $O({M^{ - 1}}{x^{2/3 + \varepsilon }})$ using at most $O({x^{1/3 + \varepsilon }})$ storage locations on each parallel processor, provided $M \leqslant {x^{1/3}}$. A variant of the algorithm was implemented and used to compute $\pi (4 \times {10^{16}})$.References
- Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman, The design and analysis of computer algorithms, Addison-Wesley Series in Computer Science and Information Processing, Addison-Wesley Publishing Co., Reading, Mass.-London-Amsterdam, 1975. Second printing. MR 0413592 M. A. Auslander & M. E. Hopkins, "An overview of PL.8 compiler," Proceeding of the SIGPLAN 82 Symposium on Compiler Construction, Boston, 1982.
- Jan Bohman, On the number of primes less than a given limit, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 576–578. MR 321890, DOI 10.1007/bf01932967 L. E. Dickson, History of the Theory of Numbers, Volume 1, Chapter XVIII, Chelsea, New York, 1971. (Reprint.)
- Richard H. Hudson and Alfred Brauer, On the exact number of primes in the arithmetic progressions $4n\pm 1$ and $6n\pm 1$, J. Reine Angew. Math. 291 (1977), 23–29. MR 441892, DOI 10.1515/crll.1977.291.23
- J. C. Lagarias and A. M. Odlyzko, New algorithms for computing $\pi (x)$, Number theory (New York, 1982) Lecture Notes in Math., vol. 1052, Springer, Berlin, 1984, pp. 176–193. MR 750665, DOI 10.1007/BFb0071543 J. C. Lagarias & A. M. Odlyzko, "Computing $\pi (x)$: An analytic method." (Preprint.) E. Landau, Primzahlen, reprint, Chelsea, New York, 1958.
- D. H. Lehmer, On the exact number of primes less than a given limit, Illinois J. Math. 3 (1959), 381–388. MR 106883, DOI 10.1215/ijm/1255455259
- David C. Mapes, Fast method for computing the number of primes less than a given limit, Math. Comp. 17 (1963), 179–185. MR 158508, DOI 10.1090/S0025-5718-1963-0158508-8
- Meissel, Ueber die Bestimmung der Primzahlenmenge innerhalb gegebener Grenzen, Math. Ann. 2 (1870), no. 4, 636–642 (German). MR 1509683, DOI 10.1007/BF01444045
- Meissel, Berechnung der Menge von Primzahlen. welche innerhalb der ersten Hundert Millionen natürlicher Zahlen vorkommen, Math. Ann. 3 (1871), no. 4, 523–525 (German). MR 1509719, DOI 10.1007/BF01442832 E. D. F. Meissel, "Über Primzahlmengen," Math. Ann., v. 21, 1883, p. 304.
- Meissel, Berechnung der Menge von Primzahlen, welche innerhalb der ersten Milliarde natürlicher Zahlen vorkommen, Math. Ann. 25 (1885), no. 2, 251–257 (German). MR 1510308, DOI 10.1007/BF01446409
- Herbert S. Wilf, What is an answer?, Amer. Math. Monthly 89 (1982), no. 5, 289–292. MR 653502, DOI 10.2307/2321713
Additional Information
- © Copyright 1985 American Mathematical Society
- Journal: Math. Comp. 44 (1985), 537-560
- MSC: Primary 11Y35; Secondary 11-04, 11N05
- DOI: https://doi.org/10.1090/S0025-5718-1985-0777285-5
- MathSciNet review: 777285