Skip to Main Content

Mathematics of Computation

Published by the American Mathematical Society since 1960 (published as Mathematical Tables and other Aids to Computation 1943-1959), Mathematics of Computation is devoted to research articles of the highest quality in computational mathematics.

ISSN 1088-6842 (online) ISSN 0025-5718 (print)

The 2020 MCQ for Mathematics of Computation is 1.78.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations
HTML articles powered by AMS MathViewer

by Claes Johnson and Jukka Saranen PDF
Math. Comp. 47 (1986), 1-18 Request permission

Abstract:

We present and analyze extensions of the streamline diffusion finite element method to the time-dependent two-dimensional Navier-Stokes equations for an incompressible fluid in the case of high Reynolds numbers. The limit case with zero viscosity, the Euler equations, is also considered.
References
  • J. Thomas Beale and Andrew Majda, Vortex methods. I. Convergence in three dimensions, Math. Comp. 39 (1982), no. 159, 1–27. MR 658212, DOI 10.1090/S0025-5718-1982-0658212-5
  • Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
  • Kenneth Eriksson, Claes Johnson, and Vidar Thomée, Time discretization of parabolic problems by the discontinuous Galerkin method, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 4, 611–643 (English, with French summary). MR 826227, DOI 10.1051/m2an/1985190406111
  • V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations, Numer. Math. 33 (1979), no. 3, 235–271. MR 553589, DOI 10.1007/BF01398643
  • T. J. Hughes & A. Brooks, "A multidimensional upwind scheme with no crosswind diffusion," in AMD, v. 34, Finite Element Methods for Convection Dominated Flows (T. J. Hughes, ed.), ASME, New York, 1979. T. J. Hughes & A. Brooks, "A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure," Finite Elements in Fluids, Vol. 4 (R. H. Gallagher, ed.), Wiley, New York, 1982. T. J. Hughes, E. T. Tezduyar & A. Brooks, Streamline Upwind Formulation for Advection-Diffusion, Navier-Stokes and First Order Hyperbolic Equations, Fourth Internat. Conf. on Finite Element Methods in Fluids, Tokyo, July, 1982.
  • O. Axelsson, L. S. Frank, and A. van der Sluis (eds.), Analytical and numerical approaches to asymptotic problems in analysis, North-Holland Mathematics Studies, vol. 47, North-Holland Publishing Co., Amsterdam-New York, 1981. MR 605494
  • Claes Johnson, Finite element methods for convection-diffusion problems, Computing methods in applied sciences and engineering, V (Versailles, 1981) North-Holland, Amsterdam, 1982, pp. 311–323. MR 784648, DOI 10.1016/0012-365x(82)90300-4
  • C. Johnson, U. Nävert & J. Pitkäranta, "Finite element methods for linear hyperbolic problems," Comput. Methods Appl. Mech. Engrg., v. 45, 1985, pp. 285-312.
  • C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation, Math. Comp. 46 (1986), no. 173, 1–26. MR 815828, DOI 10.1090/S0025-5718-1986-0815828-4
  • C. Johnson, Error Estimates and Automatic Time Step Control for Numerical Methods for Stiff Ordinary Differential Equations, Technical report, Chalmers Univ. of Technology, Göteborg, 1984. P. Lesaint, Sur la Résolution des Systèmes Hyperboliques du Premier Ordre par des Méthodes d’Élements Finis, Thèse, Université Paris VI, 1975.
  • P. Lasaint and P.-A. Raviart, On a finite element method for solving the neutron transport equation, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974) Publication No. 33, Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 89–123. MR 0658142
  • J. L. Lions, Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Paris, 1969. U. Nävert, A Finite Element for Convection-Diffusion Problems, Thesis, Chalmers Univ. of Technology, Göteborg, 1982.
  • R. Temam, Local existence of $C^{\infty }$ solutions of the Euler equations of incompressible perfect fluids, Turbulence and Navier-Stokes equations (Proc. Conf., Univ. Paris-Sud, Orsay, 1975) Lecture Notes in Math., Vol. 565, Springer, Berlin, 1976, pp. 184–194. MR 0467033
Similar Articles
Additional Information
  • © Copyright 1986 American Mathematical Society
  • Journal: Math. Comp. 47 (1986), 1-18
  • MSC: Primary 65N30; Secondary 76-08, 76D05
  • DOI: https://doi.org/10.1090/S0025-5718-1986-0842120-4
  • MathSciNet review: 842120