Class groups of number fields: numerical heuristics
Authors:
H. Cohen and J. Martinet
Journal:
Math. Comp. 48 (1987), 123-137
MSC:
Primary 11R29; Secondary 11Y40
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866103-4
MathSciNet review:
866103
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Extending previous work of H. W. Lenstra, Jr. and the first author, we give quantitative conjectures for the statistical behavior of class groups and class numbers for every type of field of degree less than or equal to four (given the signature and the Galois group of the Galois closure). The theoretical justifications for these conjectures will appear elsewhere, but the agreement with the existing tables is quite good.
- [1] I. O. Angell, A table of complex cubic fields, Bull. London Math. Soc. 5 (1973), 37–38. MR 318099, https://doi.org/10.1112/blms/5.1.37
- [2] Duncan A. Buell, The expectation of success using a Monte Carlo factoring method—some statistics on quadratic class numbers, Math. Comp. 43 (1984), no. 167, 313–327. MR 744940, https://doi.org/10.1090/S0025-5718-1984-0744940-1
- [3] H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, https://doi.org/10.1007/BFb0099440
- [4] H. Cohen & J. Martinet, "Étude heuristique des groupes de classes." (In preparation.)
- [5] H. Eisenbeis, G. Frey, and B. Ommerborn, Computation of the 2-rank of pure cubic fields, Math. Comp. 32 (1978), no. 142, 559–569. MR 480416, https://doi.org/10.1090/S0025-5718-1978-0480416-4
- [6] V. Ennola, S. Mäki, and R. Turunen, On real cyclic sextic fields, Math. Comp. 45 (1985), no. 172, 591–611. MR 804948, https://doi.org/10.1090/S0025-5718-1985-0804948-5
- [7] Veikko Ennola and Reino Turunen, On totally real cubic fields, Math. Comp. 44 (1985), no. 170, 495–518. MR 777281, https://doi.org/10.1090/S0025-5718-1985-0777281-8
- [8] Veikko Ennola and Reino Turunen, On cyclic cubic fields, Math. Comp. 45 (1985), no. 172, 585–589. MR 804947, https://doi.org/10.1090/S0025-5718-1985-0804947-3
- [9] Marie-Nicole Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de 𝑄, J. Reine Angew. Math. 277 (1975), 89–116 (French). MR 389845, https://doi.org/10.1515/crll.1975.277.89
- [10] Marie-Nicole Gras, Classes et unités des extensions cycliques réelles de degré 4 de 𝑄, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xiv, 107–124 (French, with English summary). MR 526779
- [11] Christopher Hooley, On the Pellian equation and the class number of indefinite binary quadratic forms, J. Reine Angew. Math. 353 (1984), 98–131. MR 765829, https://doi.org/10.1515/crll.1984.353.98
- [12] Sirpa Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics, vol. 797, Springer, Berlin, 1980. MR 584794
- [13] H. C. Williams and Daniel Shanks, A note on class-number one in pure cubic fields, Math. Comp. 33 (1979), no. 148, 1317–1320. MR 537977, https://doi.org/10.1090/S0025-5718-1979-0537977-7
- [14] C. P. Schnorr, Personal communication.
- [15] M. Tennenhouse and H. C. Williams, A note on class-number one in certain real quadratic and pure cubic fields, Math. Comp. 46 (1986), no. 173, 333–336. MR 815853, https://doi.org/10.1090/S0025-5718-1986-0815853-3
Retrieve articles in Mathematics of Computation with MSC: 11R29, 11Y40
Retrieve articles in all journals with MSC: 11R29, 11Y40
Additional Information
DOI:
https://doi.org/10.1090/S0025-5718-1987-0866103-4
Keywords:
Class group,
class number,
number field,
zeta function
Article copyright:
© Copyright 1987
American Mathematical Society