Class groups of number fields: numerical heuristics
HTML articles powered by AMS MathViewer
- by H. Cohen and J. Martinet PDF
- Math. Comp. 48 (1987), 123-137 Request permission
Abstract:
Extending previous work of H. W. Lenstra, Jr. and the first author, we give quantitative conjectures for the statistical behavior of class groups and class numbers for every type of field of degree less than or equal to four (given the signature and the Galois group of the Galois closure). The theoretical justifications for these conjectures will appear elsewhere, but the agreement with the existing tables is quite good.References
- I. O. Angell, A table of complex cubic fields, Bull. London Math. Soc. 5 (1973), 37–38. MR 318099, DOI 10.1112/blms/5.1.37
- Duncan A. Buell, The expectation of success using a Monte Carlo factoring method—some statistics on quadratic class numbers, Math. Comp. 43 (1984), no. 167, 313–327. MR 744940, DOI 10.1090/S0025-5718-1984-0744940-1
- H. Cohen and H. W. Lenstra Jr., Heuristics on class groups of number fields, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 33–62. MR 756082, DOI 10.1007/BFb0099440 H. Cohen & J. Martinet, "Étude heuristique des groupes de classes." (In preparation.)
- H. Eisenbeis, G. Frey, and B. Ommerborn, Computation of the $2$-rank of pure cubic fields, Math. Comp. 32 (1978), no. 142, 559–569. MR 480416, DOI 10.1090/S0025-5718-1978-0480416-4
- V. Ennola, S. Mäki, and R. Turunen, On real cyclic sextic fields, Math. Comp. 45 (1985), no. 172, 591–611. MR 804948, DOI 10.1090/S0025-5718-1985-0804948-5
- Veikko Ennola and Reino Turunen, On totally real cubic fields, Math. Comp. 44 (1985), no. 170, 495–518. MR 777281, DOI 10.1090/S0025-5718-1985-0777281-8
- Veikko Ennola and Reino Turunen, On cyclic cubic fields, Math. Comp. 45 (1985), no. 172, 585–589. MR 804947, DOI 10.1090/S0025-5718-1985-0804947-3
- Marie-Nicole Gras, Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de $\textbf {Q}$, J. Reine Angew. Math. 277 (1975), 89–116 (French). MR 389845, DOI 10.1515/crll.1975.277.89
- Marie-Nicole Gras, Classes et unités des extensions cycliques réelles de degré $4$ de $\textbf {Q}$, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xiv, 107–124 (French, with English summary). MR 526779
- Christopher Hooley, On the Pellian equation and the class number of indefinite binary quadratic forms, J. Reine Angew. Math. 353 (1984), 98–131. MR 765829, DOI 10.1515/crll.1984.353.98
- Sirpa Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics, vol. 797, Springer, Berlin, 1980. MR 584794
- H. C. Williams and Daniel Shanks, A note on class-number one in pure cubic fields, Math. Comp. 33 (1979), no. 148, 1317–1320. MR 537977, DOI 10.1090/S0025-5718-1979-0537977-7 C. P. Schnorr, Personal communication.
- M. Tennenhouse and H. C. Williams, A note on class-number one in certain real quadratic and pure cubic fields, Math. Comp. 46 (1986), no. 173, 333–336. MR 815853, DOI 10.1090/S0025-5718-1986-0815853-3
Additional Information
- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp. 48 (1987), 123-137
- MSC: Primary 11R29; Secondary 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-1987-0866103-4
- MathSciNet review: 866103