## Large integral points on elliptic curves

HTML articles powered by AMS MathViewer

- by Don Zagier PDF
- Math. Comp.
**48**(1987), 425-436 Request permission

Addendum: Math. Comp.

**51**(1988), 375.

## Abstract:

We describe several methods which permit one to search for big integral points on certain elliptic curves, i.e., for integral solutions (*x, y*) of certain Diophantine equations of the form ${y^2} = {x^3} + ax + b\;(a,b \in {\mathbf {Z}})$ in a large range $|x|,|y| \leqslant B$, in time polynomial in $\log \log B$. We also give a number of individual examples and of parametric families of examples of specific elliptic curves having a relatively large integral point.

## References

- Alan Baker,
*Transcendental number theory*, Cambridge University Press, London-New York, 1975. MR**0422171** - Walter Borho,
*Befreundete Zahlen: ein zweitausend Jahre altes Thema der elementaren Zahlentheorie*, Living numbers, Math. Miniaturen, vol. 1, Birkhäuser, Basel-Boston, Mass., 1981, pp. 5–38 (German). MR**643809** - Joe P. Buhler, Benedict H. Gross, and Don B. Zagier,
*On the conjecture of Birch and Swinnerton-Dyer for an elliptic curve of rank $3$*, Math. Comp.**44**(1985), no. 170, 473–481. MR**777279**, DOI 10.1090/S0025-5718-1985-0777279-X - J. H. Conway and N. J. A. Sloane,
*Lorentzian forms for the Leech lattice*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 2, 215–217. MR**640949**, DOI 10.1090/S0273-0979-1982-14985-0
H. E. Dudeney, - W. J. Ellison, F. Ellison, J. Pesek, C. E. Stahl, and D. S. Stall,
*The Diophantine equation $y^{2}+k=x^{3}$*, J. Number Theory**4**(1972), 107–117. MR**316376**, DOI 10.1016/0022-314X(72)90058-3 - A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász,
*Factoring polynomials with rational coefficients*, Math. Ann.**261**(1982), no. 4, 515–534. MR**682664**, DOI 10.1007/BF01457454 - Joseph H. Silverman,
*The arithmetic of elliptic curves*, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR**817210**, DOI 10.1007/978-1-4757-1920-8 - Ray P. Steiner,
*On Mordell’s equation $y^2-k=x^3$: a problem of Stolarsky*, Math. Comp.**46**(1986), no. 174, 703–714. MR**829640**, DOI 10.1090/S0025-5718-1986-0829640-3

*Amusements in Mathematics*, Nelson, London, 1917.

## Additional Information

- © Copyright 1987 American Mathematical Society
- Journal: Math. Comp.
**48**(1987), 425-436 - MSC: Primary 11G05; Secondary 11D25, 11Y50
- DOI: https://doi.org/10.1090/S0025-5718-1987-0866125-3
- MathSciNet review: 866125