Eigenvalue finite difference approximations for regular and singular Sturm-Liouville problems

Author:
Nabil R. Nassif

Journal:
Math. Comp. **49** (1987), 561-580

MSC:
Primary 65L10; Secondary 34B25

DOI:
https://doi.org/10.1090/S0025-5718-1987-0906189-1

MathSciNet review:
906189

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper includes two parts. In the first part, general error estimates for "stable" eigenvalue approximations are obtained. These are practical in the sense that they are based on the discretization error of the difference formula over the eigenspace associated with the isolated eigenvalue under consideration. Verification of these general estimates are carried out on two difference schemes: that of Numerov to solve the Schrödinger singular equation and that of the central difference formula for regular Sturm-Liouville problems. In the second part, a sufficient condition for obtaining a "stable" difference scheme is derived. Such a condition (condition (N) of Theorem 2.1) leads to a simple "by hand" verification, when one selects a difference scheme to compute eigenvalues of a differential operator. This condition is checked for one- and two-dimensional problems.

- J. H. Bramble and J. E. Osborn,
*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, DOI https://doi.org/10.1090/S0025-5718-1973-0366029-9
F. Chatelin, - Jean Descloux,
*Essential numerical range of an operator with respect to a coercive form and the approximation of its spectrum by the Galerkin method*, SIAM J. Numer. Anal.**18**(1981), no. 6, 1128–1133. MR**639003**, DOI https://doi.org/10.1137/0718077
J. Descloux, N. R. Nassif & J. Rappaz, "On spectral approximation, Part 1: The problem of convergence; Part 2: Error estimates for the Galerkin method," - J. Descloux, N. Nassif, and J. Rappaz,
*On properties of spectral approximations*, Equadiff IV (Proc. Czechoslovak Conf. Differential Equations and their Applications, Prague, 1977) Lecture Notes in Math., vol. 703, Springer, Berlin, 1979, pp. 81–85. MR**535326** - Rolf Dieter Grigorieff,
*Diskrete Approximation von Eigenwertproblemen. I. Qualitative Konvergenz*, Numer. Math.**24**(1975), no. 4, 355–374 (German). MR**423099**, DOI https://doi.org/10.1007/BF01397374 - Heinz-Otto Kreiss,
*Difference approximations for boundary and eigenvalue problems for ordinary differential equations*, Math. Comp.**26**(1972), 605–624. MR**373296**, DOI https://doi.org/10.1090/S0025-5718-1972-0373296-3
B. V. Numerov, - E. C. Titchmarsh,
*Eigenfunction expansions associated with second-order differential equations. Part I*, 2nd ed., Clarendon Press, Oxford, 1962. MR**0176151** - John E. Osborn,
*Spectral approximation for compact operators*, Math. Comput.**29**(1975), 712–725. MR**0383117**, DOI https://doi.org/10.1090/S0025-5718-1975-0383117-3 - Gilbert Strang and George J. Fix,
*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377** - Friedrich Stummel,
*Elliptische Differenzenoperatoren unter Dirichletranbedingungen*, Math. Z.**97**(1967), 169–211 (German). MR**224302**, DOI https://doi.org/10.1007/BF01111697 - G. M. Vainikko,
*The difference method for ordinary differential equations*, Ž. Vyčisl. Mat i Mat. Fiz.**9**(1969), 1057–1074 (Russian). MR**280027** - J. H. Wilkinson,
*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422**

*Théorie de l’Approximation des Opérateurs Linéaires, Application au Calcul des Valeurs Propres d’Opérateurs Différentiels et Intégraux*, Lecture Notes, Grenoble University, 1977.

*RAIRO Anal. Numér.*, v. 12, 1978, pp. 97-112; pp. 113-119.

*Monthly Notices Roy. Astronom. Soc.*, v. 84, (180), 1924, p. 592.

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10,
34B25

Retrieve articles in all journals with MSC: 65L10, 34B25

Additional Information

Article copyright:
© Copyright 1987
American Mathematical Society