An analysis of a uniformly convergent finite difference/finite element scheme for a model singular-perturbation problem
HTML articles powered by AMS MathViewer
- by Eugene C. Gartland PDF
- Math. Comp. 51 (1988), 93-106 Request permission
Abstract:
Uniform $\mathcal {O}({h^2})$ convergence is proved for the El-Mistikawy-Werle discretization of the problem $- \varepsilon u”+ au’+ bu = f$ on (0,1), $u(0) = A$, $u(1) = B$, subject only to the conditions $a,b,f \in {\mathcal {W}^{2,\infty }}[0,1]$ and $a(x) > 0, 0 \leq x \leq 1$. The principal tools used are a certain representation result for the solutions of such problems that is due to the author [Math. Comp., v. 48, 1987, pp. 551-564] and the general stability results of Niederdrenk and Yserentant [Numer. Math., v. 41, 1983, pp. 223-253]. Global uniform $\mathcal {O}(h)$ convergence is proved under slightly weaker assumptions for an equivalent Petrov-Galerkin formulation.References
- Alan E. Berger, Jay M. Solomon, and Melvyn Ciment, An analysis of a uniformly accurate difference method for a singular perturbation problem, Math. Comp. 37 (1981), no. 155, 79–94. MR 616361, DOI 10.1090/S0025-5718-1981-0616361-0
- Jim Douglas Jr. and Todd Dupont, Some superconvergence results for Galerkin methods for the approximate solution of two-point boundary problems, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 89–92. MR 0366044 T. M. El-Mistikawy & M. J. Werle, "Numerical method for boundary layers with blowing—the exponential box scheme," AIAA J., v. 16, 1978, pp. 749-751. E. C. Gartland, Jr., Strong Stability and a Representation Result for a Singular Perturbation Problem, Technical Report AMS 87-1, Dept. of Mathematics, Southern Methodist University, January, 1987.
- Eugene C. Gartland Jr., Uniform high-order difference schemes for a singularly perturbed two-point boundary value problem, Math. Comp. 48 (1987), no. 178, 551–564, S5–S9. MR 878690, DOI 10.1090/S0025-5718-1987-0878690-0 E. C. Gartland, Jr., An Analysis of the Allen-Southwell Finite-Difference Scheme for a Model Singular Perturbation Problem, Technical Report AMS 87-2, Dept. of Mathematics, Southern Methodist University, April, 1987.
- A. F. Hegarty, J. J. H. Miller, and E. O’Riordan, Uniform second order difference schemes for singular perturbation problems, Boundary and interior layers—computational and asymptotic methods (Proc. Conf., Trinity College, Dublin, 1980) Boole, Dún Laoghaire, 1980, pp. 301–305. MR 589380 T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, Berlin, 1980.
- Stephen H. Leventhal, An operator compact implicit method of exponential type, J. Comput. Phys. 46 (1982), no. 1, 138–165. MR 665807, DOI 10.1016/0021-9991(82)90008-0
- Jens Lorenz, Stability and consistency analysis of difference methods for singular perturbation problems, Analytical and numerical approaches to asymptotic problems in analysis (Proc. Conf., Univ. Nijmegen, Nijmegen, 1980) North-Holland Math. Stud., vol. 47, North-Holland, Amsterdam-New York, 1981, pp. 141–156. MR 605505
- Klaus Niederdrenk and Harry Yserentant, Die gleichmäßige Stabilität singulär gestörter diskreter und kontinuierlicher Randwertprobleme, Numer. Math. 41 (1983), no. 2, 223–253 (German, with English summary). MR 703123, DOI 10.1007/BF01390214
- Eugene O’Riordan and Martin Stynes, An analysis of a superconvergence result for a singularly perturbed boundary value problem, Math. Comp. 46 (1986), no. 173, 81–92. MR 815833, DOI 10.1090/S0025-5718-1986-0815833-8
- Murray H. Protter and Hans F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967. MR 0219861 D. R. Smith, A Green Function for a Singularly Perturbed Dirichlet Problem, Technical Report, Dept. of Mathematics, University of California, San Diego, March, 1984.
- Donald R. Smith, Singular-perturbation theory, Cambridge University Press, Cambridge, 1985. An introduction with applications. MR 812466
- Martin Stynes and Eugene O’Riordan, A finite element method for a singularly perturbed boundary value problem, Numer. Math. 50 (1986), no. 1, 1–15. MR 864301, DOI 10.1007/BF01389664
- W. G. Szymczak and I. Babuška, Adaptivity and error estimation for the finite element method applied to convection diffusion problems, SIAM J. Numer. Anal. 21 (1984), no. 5, 910–954. MR 760625, DOI 10.1137/0721059
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 93-106
- MSC: Primary 65L10; Secondary 65L60
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942145-6
- MathSciNet review: 942145