## Bivariate interpolation with quadratic box splines

HTML articles powered by AMS MathViewer

- by Morten Dæhlen and Tom Lyche PDF
- Math. Comp.
**51**(1988), 219-230 Request permission

## Abstract:

Existence and uniqueness results are given for interpolation with translates of a bivariate, three-directional, ${C^0}$-quadratic box spline over a finite polygonal region. A Hermite interpolation problem for a slightly more general box spline is also considered.## References

- C. de Boor and K. Höllig,
*Bivariate box splines and smooth pp functions on a three direction mesh*, J. Comput. Appl. Math.**9**(1983), no. 1, 13–28. MR**702228**, DOI 10.1016/0377-0427(83)90025-0 - Carl de Boor,
*Multivariate approximation*, The state of the art in numerical analysis (Birmingham, 1986) Inst. Math. Appl. Conf. Ser. New Ser., vol. 9, Oxford Univ. Press, New York, 1987, pp. 87–109. MR**921663** - E. Ward Cheney,
*Multivariate approximation theory*, CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 51, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1986. Selected topics. MR**862115**, DOI 10.1137/1.9781611970197
C. K. Chui, T. X. He & R. H. Wang, "Interpolation of bivariate linear splines," in - C. K. Chui and T. X. He,
*On location of sample points for interpolation by bivariate $C^1$ quadratic splines*, Numerical methods of approximation theory, Vol. 8 (Oberwolfach, 1986) Internat. Schriftenreihe Numer. Math., vol. 81, Birkhäuser, Basel, 1987, pp. 30–43. MR**1025765** - Morten Dæhlen,
*An example of bivariate interpolation with translates of $C^0$-quadratic box-splines on a three direction mesh*, Comput. Aided Geom. Design**4**(1987), no. 3, 251–255. MR**917785**, DOI 10.1016/0167-8396(87)90017-3 - Klaus Höllig,
*Box splines*, Approximation theory, V (College Station, Tex., 1986) Academic Press, Boston, MA, 1986, pp. 71–95. MR**903683** - Charles A. Micchelli,
*Algebraic aspects of interpolation*, Approximation theory (New Orleans, La., 1986) Proc. Sympos. Appl. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1986, pp. 81–102. MR**864367**, DOI 10.1090/psapm/036/864367
T. I. Mueller, - Kurt Jetter,
*A short survey on cardinal interpolation by box splines*, Topics in multivariate approximation (Santiago, 1986) Academic Press, Boston, MA, 1987, pp. 125–139. MR**924827** - Larry L. Schumaker,
*Spline functions: basic theory*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. MR**606200** - Richard S. Varga,
*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502**

*Alfred Haar Memorial Conference*(J. Szabados and K. Tandori, eds.), North-Holland, Amsterdam, 1986.

*Geometric Modelling with Multivariate*B-

*splines*, Dissertation, Dept. of Comp. Sci., Univ. of Utah, 1986.

## Additional Information

- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp.
**51**(1988), 219-230 - MSC: Primary 41A05; Secondary 41A15, 65D07
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942151-1
- MathSciNet review: 942151