A lower bound for the counting function of Lucas pseudoprimes
HTML articles powered by AMS MathViewer
- by P. Erdős, P. Kiss and A. Sárközy PDF
- Math. Comp. 51 (1988), 315-323 Request permission
Abstract:
We show that there is an absolute constant c such that, for any nondegenerate Lucas sequence, the number of Lucas pseudoprimes not exceeding x is greater than $\exp \{ {(\log x)^c}\}$ if x is sufficiently large.References
- Robert Baillie and Samuel S. Wagstaff Jr., Lucas pseudoprimes, Math. Comp. 35 (1980), no. 152, 1391–1417. MR 583518, DOI 10.1090/S0025-5718-1980-0583518-6
- P. Erdös, On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1956), 201–206. MR 79031
- É. Fouvry and F. Grupp, On the switching principle in sieve theory, J. Reine Angew. Math. 370 (1986), 101–126. MR 852513
- S. Graham, On Linnik’s constant, Acta Arith. 39 (1981), no. 2, 163–179. MR 639625, DOI 10.4064/aa-39-2-163-179
- H. Halberstam and H.-E. Richert, Sieve methods, London Mathematical Society Monographs, No. 4, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1974. MR 0424730
- Péter Kiss, Some results on Lucas pseudoprimes, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 153–159 (1986). MR 856986
- D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. (2) 31 (1930), no. 3, 419–448. MR 1502953, DOI 10.2307/1968235
- D. H. Lehmer, On the Converse of Fermat’s Theorem, Amer. Math. Monthly 43 (1936), no. 6, 347–354. MR 1523680, DOI 10.2307/2301798
- Carl Pomerance, A new lower bound for the pseudoprime counting function, Illinois J. Math. 26 (1982), no. 1, 4–9. MR 638549
- Carl Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), no. 156, 587–593. MR 628717, DOI 10.1090/S0025-5718-1981-0628717-0
- Carl Pomerance, Popular values of Euler’s function, Mathematika 27 (1980), no. 1, 84–89. MR 581999, DOI 10.1112/S0025579300009967
- Karl Prachar, Primzahlverteilung, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957 (German). MR 0087685
- A. Schinzel, Primitive divisors of the expression $A^{n}-B^{n}$ in algebraic number fields, J. Reine Angew. Math. 268(269) (1974), 27–33. MR 344221, DOI 10.1515/crll.1974.268-269.27
- C. L. Stewart, Primitive divisors of Lucas and Lehmer numbers, Transcendence theory: advances and applications (Proc. Conf., Univ. Cambridge, Cambridge, 1976) Academic Press, London, 1977, pp. 79–92. MR 0476628
Additional Information
- © Copyright 1988 American Mathematical Society
- Journal: Math. Comp. 51 (1988), 315-323
- MSC: Primary 11B39; Secondary 11Y55
- DOI: https://doi.org/10.1090/S0025-5718-1988-0942158-4
- MathSciNet review: 942158