## On the numerical solution of the regularized Birkhoff equations

HTML articles powered by AMS MathViewer

- by Christoph Börgers PDF
- Math. Comp.
**53**(1989), 141-156 Request permission

## Abstract:

The Birkhoff equations for the evolution of vortex sheets are regularized in a way proposed by Krasny. The convergence of numerical approximations to a fixed regularization is studied theoretically and numerically. The numerical test problem is a two-dimensional inviscid jet.## References

- Frederick H. Abernathy and Richard E. Kronauer,
*The formation of vortex streets*, J. Fluid Mech.**13**(1962), 1–20. MR**138296**, DOI 10.1017/S0022112062000452
H. Aref & E. D. Siggia, "Evolution and breakdown of a vortex street in two dimensions," - Garrett Birkhoff,
*Helmholtz and Taylor instability*, Proc. Sympos. Appl. Math., Vol. XIII, American Mathematical Society, Providence, R.I., 1962, pp. 55–76. MR**0137423**
D. R. Boldman & P. F. Brinich & M. E. Goldstein, "Vortex shedding from a blunt trailing edge with equal and unequal external mean velocities," - Russel E. Caflisch and John S. Lowengrub,
*Convergence of the vortex method for vortex sheets*, SIAM J. Numer. Anal.**26**(1989), no. 5, 1060–1080. MR**1014874**, DOI 10.1137/0726059 - Russel E. Caflisch and Oscar F. Orellana,
*Long time existence for a slightly perturbed vortex sheet*, Comm. Pure Appl. Math.**39**(1986), no. 6, 807–838. MR**859274**, DOI 10.1002/cpa.3160390605 - Alexandre Joel Chorin,
*Numerical study of slightly viscous flow*, J. Fluid Mech.**57**(1973), no. 4, 785–796. MR**395483**, DOI 10.1017/S0022112073002016 - C. William Gear,
*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898** - Robert Krasny,
*A study of singularity formation in a vortex sheet by the point-vortex approximation*, J. Fluid Mech.**167**(1986), 65–93. MR**851670**, DOI 10.1017/S0022112086002732
R. Krasny, "Desingularization of periodic vortex sheet roll-up," - Robert Krasny,
*Computation of vortex sheet roll-up*, Vortex methods (Los Angeles, CA, 1987) Lecture Notes in Math., vol. 1360, Springer, Berlin, 1988, pp. 9–22. MR**979557**, DOI 10.1007/BFb0089767
E. Meiburg, "On the role of subharmonic perturbations in the far wake," - D. W. Moore,
*The spontaneous appearance of a singularity in the shape of an evolving vortex sheet*, Proc. Roy. Soc. London Ser. A**365**(1979), no. 1720, 105–119. MR**527594**, DOI 10.1098/rspa.1979.0009 - C. Sulem, P.-L. Sulem, C. Bardos, and U. Frisch,
*Finite time analyticity for the two- and three-dimensional Kelvin-Helmholtz instability*, Comm. Math. Phys.**80**(1981), no. 4, 485–516. MR**628507**, DOI 10.1007/BF01941659

*J. Fluid Mech.*, v. 109, 1981, pp. 435-463.

*J. Fluid Mech.*, v. 75, 1976, pp. 721-735.

*J. Comput. Phys.*, v. 65, 1986, pp. 292-313.

*J. Fluid Mech.*, v. 177, 1987, pp. 83-107.

## Additional Information

- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp.
**53**(1989), 141-156 - MSC: Primary 76C05; Secondary 76-08, 76D25
- DOI: https://doi.org/10.1090/S0025-5718-1989-0969481-2
- MathSciNet review: 969481