Effective bounds for the maximal order of an element in the symmetric group
HTML articles powered by AMS MathViewer
- by Jean-Pierre Massias, Jean-Louis Nicolas and Guy Robin PDF
- Math. Comp. 53 (1989), 665-678 Request permission
Abstract:
Let $\sigma _n$ be the symmetric group of n elements and \[ g(n) = \max _{\sigma \in \sigma _n}(\text {order of $\sigma $} ).\] We give here some effective bounds for $g(n)$ and $P(g(n))$ (greatest prime divisor of $g(n)$). Theoretical proofs are in "Evaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique" (Acta Arith., v. 50, 1988, pp. 221-242). The tools used here are techniques of superior highly composite numbers of Ramanujan and bounds of Rosser and Schoenfeld on the Chebyshev function $\theta (x)$.References
-
E. Landau, "Über die Maximalordnung der Permutationen gegebenen Grades," Arch. Math. Phys. Ser. 3, v. 5, 1903, pp. 92-103.
- Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen. 2 Bände, Chelsea Publishing Co., New York, 1953 (German). 2d ed; With an appendix by Paul T. Bateman. MR 0068565
- Jean-Pierre Massias, Majoration explicite de l’ordre maximum d’un élément du groupe symétrique, Ann. Fac. Sci. Toulouse Math. (5) 6 (1984), no. 3-4, 269–281 (1985) (French, with English summary). MR 799599 J. P. Massias, Ordre Maximum d’un Élément du Groupe Symétrique et Applications, Thèse de 3$^{\text {\`eme}}$ cycle, Université de Limoges, 1984.
- J.-P. Massias, J.-L. Nicolas, and G. Robin, Évaluation asymptotique de l’ordre maximum d’un élément du groupe symétrique, Acta Arith. 50 (1988), no. 3, 221–242 (French). MR 960551, DOI 10.4064/aa-50-3-221-242 J. P. Massias & G. Robin, "Calculs effectifs sur le k$^{\text {\`eme}}$ nombre premier." (To appear.)
- William Miller, The maximum order of an element of a finite symmetric group, Amer. Math. Monthly 94 (1987), no. 6, 497–506. MR 935414, DOI 10.2307/2322839 F. Morain, Tables sur la Fonction $g(n)$, Département de Math., Université de Limoges, 1988.
- Jean-Louis Nicolas, Ordre maximal d’un élément du groupe $S_{n}$ des permutations et “highly composite numbers”, Bull. Soc. Math. France 97 (1969), 129–191 (French). MR 254130
- Jean-Louis Nicolas, Calcul de l’ordre maximum d’un élément du groupe symétrique $S_{n}$, Rev. Francaise Informat. Recherche Opérationnelle 3 (1969), no. Sér. R-2, 43–50 (French, with Loose English summary). MR 0253514
- J.-L. Nicolas and G. Robin, Majorations explicites pour le nombre de diviseurs de $N$, Canad. Math. Bull. 26 (1983), no. 4, 485–492 (French, with English summary). MR 716590, DOI 10.4153/CMB-1983-078-5
- Jean-Louis Nicolas, On highly composite numbers, Ramanujan revisited (Urbana-Champaign, Ill., 1987) Academic Press, Boston, MA, 1988, pp. 215–244. MR 938967
- S. Ramanujan, Highly composite numbers [Proc. London Math. Soc. (2) 14 (1915), 347–409], Collected papers of Srinivasa Ramanujan, AMS Chelsea Publ., Providence, RI, 2000, pp. 78–128. MR 2280858
- Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
- J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
- J. Barkley Rosser and Lowell Schoenfeld, Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$, Math. Comp. 29 (1975), 243–269. MR 457373, DOI 10.1090/S0025-5718-1975-0457373-7
Additional Information
- © Copyright 1989 American Mathematical Society
- Journal: Math. Comp. 53 (1989), 665-678
- MSC: Primary 11N45; Secondary 11Y70, 20B05, 20D60
- DOI: https://doi.org/10.1090/S0025-5718-1989-0979940-4
- MathSciNet review: 979940